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ABSTRACT

The notational stability of a dual-spin, quasi-ngid, axsymmeic spacecraft mnaining

a driven rotor is analyzed. The pupose is to examine a revised energy-sink stability theory

that properly accounts for the energy contribution of the motor. An inconsistency in the

developm t disprm the existing energy-sink theory's assumption that the motor of the

system contributes exactly enough energy to offset the frictional losses between the rotor

and the platfaor. Using the concept of care energy, the revised stability criteria for a dual-

spin, quasi-rigid, axisymmetric spacecraft containing a driven rotor is derived. An

expression for nutation angle as a function of core energy over time is then determined.

Numerical simulations are used to verify the revised energy-sink stability theory. The dual-

spin, quasi-rigid, axisymmetric system pmrented by D. L. Mingori was chosen for the

simulation. Equations for angular momentum and total energy were necessary to validate

the numerical simulation and confirm aspects of the revised energy-sink stability theory.

These equations are derived from the first principles of dynamics and are included in the

analysis. An explicit relationship for core energy as a function of time does not exist.

Various models postulating core energy are presented and analyzed. The numerical

simulations of the computed nutation angles as a function of the postulated core energy

compare well with the actual nutation angles of the system to confirm the revised energy-

sink stability criteria.
looession For

KTIS GRA&I

DTIC TAB 5
Unannounced Q
3ustif1ication

By

kvOilabll.ty Codoe

Ivai- an(i or



TABLE OF CONTENTS

L INTRODUC11ON 1

A. SDIGLE SPIN SATEULTS 1

1. Equtiom of nodon 1

2. Snml Spin Satellite Stbulity 4

B. DUAL SPIN SATELLITES 7

KL PROBLEM DEFINYTION 13

A. OVERVIEW 13

B. INCONSISTENCY OF THE ENERGY SINK THEORY 14

C. CORE ENEG•Y AND ENERGY DISSIPATION 15

D. NUTATIONAL MOTION 26

iUL DYNAMICAL EQUATIONS 29

A. MINGORI'S DUAL-SPIN SYSTEM 29

B. ANGULAR MOMENTUM 32

C. ENERGY 38

D. MINGOR'S EQUATIONS OF MOTION 41

E NUTATION ANGLE 42

F. CORE ENERGY 43

1. TMo•edal Care Enr Model 43

2. Veabu Lostic Co Energy Model 43

IV. NUMERICAL SIMULATION 46

A. NUMERICAL SIMULATION EQUATIONS OF MOTION 46

1. Mingpri's Equadons of Modon 46

IV



• . -,o

2. Ansibi MI 1 u 48

3. Numbsi An*l 48

4. Enery 48

5. Cane Energy and Postulated Care Energy 49

B. COMPUITER PROGRAM 50

1. Inidalizamion 50

a Variables 51

b. Input File 51

2. Preliininary Calculations 51

3. Numerical Integradion 52

4. Calculaton of System Parameters 52

5. Graphics Output 53

6. Computr Prongm Validation 53

V. ANALYSIS 55

A. INTRODUCTION 55

1. Objective 55

2. Numerical Simulation Cases 55

B. DISCUSSION 57

1. Angular Momentum 57

2. Total Energy, Platform and Rotor Core Energy 58

3. Stability Criteria 59

4. Postulated Com Energy and Nutation Angle 60

L. Exponential Core Energy Model 60

b. Vehulst Logisc Core, Enrg Model 62

C. FURTHER RESEARCH 63

VL CONCLUSION 66

V



REF E(•.s 67

APP9 D1X A - NUMERICAL SIMULA'IOt' DATA 68

Case I - Inertia Ratio> 1, Stabe, Exponential Model

Case2 - Inertia Ratio< 1, Stable Exponential Model

Case3 - Inertia Ratio < 1, Unstable, Exponential Model

Case4 - Ineia Ratio> , Unsmble, Exponential Model

Case 5 - Inertia Ratio< 1, Stable, Vubulst Model

Case6 - Inetia Ratio< 1, Unstmble, Verhust Model

Case 7 - Inertia Ratio> 1, Unstable, Verhulst Model

APPENDIX B - COMU PROGRAM CODE 117

INrTIAL DISTRIBUTION LIST 133

vi



.; t:•, .• . ,

TABLE OF SYMBOLS

A quantity as detined in Equaton (138)
a adial di e of z•m parie masses from the b3 axis
d radial distance of platform paricle masses from the b3' axis
B axisymmetric rigid body and reference frame, and entire

dual-spin systemi body and reference frame

B J rFerence, frame, coordinate axis origin, and center of mass

of zoao coordinates bi

B*" reference frame, coordinate axis origin, and center of mass

of paform cowrte b1'
bi coordinate axes of the rigid body, coordinate axes of the

rotor of the dual-spin system; which coincide with the
princ�pa of the body

b.' coordinate axes of the platform of the dual-spin system,
which coincide with the principle axes of the platform

b €coordinate axes bi moved to the center of mass of the dual-
spin system

C quantity asdefned in Equation (138)
c damping coefficient of the rotor damper of the dual-spin

system
CO damping coefficient of the platform damper of the dual-spin

system
diW differential mass element
d& differential mass element of the rotor
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hi angular momentum of the i th particle with respect to the
system center of mass

hM angular momentum of the rotor with respect to the system

center of mass
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Ai time rate of change of the angular momentum along the bi th
coordinate axis
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coordinate axis, principle moment of inertia of the rotor

about the bi th coordinate axis
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,min minimum moment of inertia
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system
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j index that references a specific location of a variable's vecw

or matrix
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k constant of the room damper of the dual-spin system
k sprng constant of the platform damper of the dual-spin

system

Ki matheticl constant, i - 1,2,3,4

I distance between the rotor center of mass and the platform

center of mass

it quantity defined in Equation (138)

12 quantity defined in Equation (138)
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M moment vector of all forces acting on the system
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masses mb
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N inertial refernmce frame

o coordinate axes origin and center of mass of the rigid body
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Q quantity defined in Equation (107)

O quantity defined in Equation (100)
d quantity defined in Equation (44)
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referenceframeN
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frameB
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frame B
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respect to the referece frame B
Nt, definition.of a differential mass element with respect to the
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reference frame B

TM motor torque
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TR net torque applied to the rotor due to all forces
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TP*1M torque applied to the platform due to the motor when both
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TR*M torque applied to the rotor due to the motor when both the
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t time

U potential energy of the sytem
u location of the differential mass element of the rotor with

respect to the reference fame B along the b1 axis
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reference frame N
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axis from the rotor coordinate axes (bi) reference frame

origin B"
mathematcal variable as defined in Equation (22)

£ small perturbation value

£ time rate of change of perturbation

Squantity defined in Equation (138)

time rate of change of
postulated nutation angle as a function of rotor core energy

W postulated nutation angle as a function of platform core
energy
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A' platfrow num aton freueuey

Ao inertial nuztedon frequency
V quantity defined in Equation (138)
p quantit defined in Equation (138)

p' quantity defined in Equation (138)
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with respect to die platform
angular position of the platform with respect to the rotor, is

equal to -a

Map angular velocity vector of body and reference frame B with
respect to inertial reference frame N

Oft initial angular velocity value along the b3 th coordinate axis
befor the perturbation

60 time, rate of change of initial angular velocity value along the
b3 th coordinate axis

ah angular velocity of body B along the bi th coordinate axis

time rate of change of the angular velocity of body B along
the bi th coordinate ais

0)~ second derivative with respect to time of the angular velocity
of body B along the bi th coordinate ais

O)S spin angular velocity of body B, spin angular velocity of
rotor of the dual-spin system

its time rate of change of spin angular velocity of body B. time
rate of chang of spin angular velocity of rotor of the dual-
spin system

WS, spin angular velocity of platform of the dual-spin system
0),' time rate of change of spin angular velocity of platform of

the dual-spin system

cot tansverse angular velocity vector
vans~vere Moanua velocity vector magnitudee
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L INTRODUCTION

A cProological review of early spacecrft types, and the stability criteria developed

for theM provides a sufficient backgound for dohe fndamental concepts of this thesis Mwe

revised energy-sink stability criterion is then presn ed, and an equation for nutation angle

as a function of eergy, dissipatim over time is developed.

A. SINGLE SPIN SATELLITES

1. Equations of Motion

The earliest saeits ook advantage of dte fact that ability could be achieved via

the 'gyroscopic stiffness' of a spinning body. A preliminary dynamic model for the

satellite could be achieved with Eulers equations of motion for a rigid body. Eu'

moment equaton can be written as

M = = I +N + Xh (1)
dt dt

In component fom this becomes

M2 = )6+ o)3 h, - o)h 3  (2)

M3 - h+ wih 2 - a)2h,

Simplification of the model is accompl by assuming that it is axisymmetric, that the

body-fixed axes coincide with the principal axes (correct for simple spacecraft with

1 12), and that the body is in a torque-free environment (a valid approximation used

throughout this thesis). The spacecraft is then repesented by Figure (1) and the equatons



o - t ,+6 ;)

b(3

o - I2•+!•-•j ,O

,b 2

Axsm mic Rigd Body

The angular velocity vector, angWlar momntm vector, and the kinetic energy may be

exuuadm pectively as

t ,a ?lb+ 0 2 b2 +w3 b3  (4)

hb - 1 1mlb1 I+12a02hb2+1303b 3  (5)

E - 10 &÷2 +12?+13OP (6)

A tf a of dtae n tion cm abe mnle eI 1-12 -l 1and 13 -= I. From the third

line of Fuation (3) it can be seen that the angulr velocity about the spin axis b3 is

consmt. tthefore f - a,. The transverse angulr velocity components interchange

between the b, and the b2 axes but the magnitude is constant, so one can let

2



01 OIz~h +Ot .2 MThrMr

N0 I+.. b3 (7)

h = Is--+Iom b3 (8)

2 a ",2 * ,V2 (9)

Became the motion is mique-fre, 0h is const•nt and h is fixed in space Because there art

no energy souces or sinks, E is also constant. Finally, the above conditions result in

ro-- being a constant.

An expression for the nutation angle may now be developed. The orientation of

the body axes with re= ;t to an inertial reference fame is desired to provide a measure of

the body's dynamic behavior. Because the angular mmenmtum vector is fixed in space, the

nutadon angle is defined as the angle between the body-fixed axis about which spin is

desired and the angular momentum vector, and can be expressed in one of the following

forms

(m c-b - CoS- 1 -1 S-i (((

- a Pfibl+h2bAI woi b, +I2 e2 b21) u. n- 1ar w (13)
0 sir um-7n bF N

In thes equations the first and second tPwms correspond to the general case with spin about

the b3 axis, and the thi term uses the simplified notation to describe an axisyminetric

body. In dte special cas of spin about only one principal axis of an iisymmemc body,

he angular momentum vector and de angular velocity vector wi lie on the Spin axis. With

spin components on two or more principal axes, dt three vectors will not be coincident,

although they still will be on de same pane.

3



2. Single Spin Satellite Stability

A torque-free, axisymmetric rigid body with the body axes coinciding with the

prhincple moments of inertia will be stable about the axis of either the maximum moment of

inertia or the minimum moment of inertia. To pove this, one begins with an arbivazy rigid

body. The body is given the initial condition of steady angular velocity, ft, about a

principal axis, and is then perturbed slightly. It is assumed that the angular velocities about

the other axes are small, and are approximately the same order of magnitude as the

perturbation (Oh - o2-4. The system will be considered stable if the perturbation does

not increase over time. Given an initial angular velocity with a perturbation,

N-.B
(o - oi bi + o2 b2 + ({o + e) b3, and given arbitrary inertias 11 12, 13, Euler's

equations of motion can be written as

0 -= 11 +(13-12) O(Oo+ C)

0 = 12 62 + (11 -13) W1 (0)0 + C) (14)

0 13 63 +(12-1)Ih0)2

The equations are linearized by neglecting terms of magnitude e2. Rewriting the equations

by eliminating the terms e ah, e of, and w, 0)2 results in

6 = (12-13) 0)2)0(15)

62=(13-11) )0)
12 (16)

63 - 60+i = i W 0 (17)

From Equation (17), one can conclude that e-2 constant By differentiating Equation (15),

and using Equation (16) to eliminate 62, one get

/+ (+(L3-12)(13-I),) , h 0 (18)

Similarly, from differentiating Equation (16), and using Equation (15) to eliminate 61, one

4



+ 6312) h 11 aq 2 0(19)

Tme equation we identified as second order, linest, ordimy differential equations with

-n coefficiets. The general solution for these differential equation

o1 = Kj eT' + K2 eC ' (20)

S= K3  ei'7 +K 4  C-' ' (21)

where

V 1112

If is imaginary, w1 and o2 will increase without bound over tim, and the motion will be

unstable. Stability is achieved if y is real. The first case occurs when the maximum

momnt ofinertia is about the spin (b3 ) axisnthn 3 > 11 ,13 > 12 and (1- 12)(13- 1) > 0.

In this case the inertia ratio I, / I,, defined as the inertia about the spin axis over the inertia

about a mnsverse axis, is greater than one. The second case occurs when the minimum

moment of inertia is about the spin (b3 ) axiS thenl 3 < 11 , 13 <12, and (13 - 12 ) (13 - 11) > 0

as well Here the inertia ratio is less than one. In both of the above cases 7 is real and the

motion is stable. However, if 13 is the intermediate moment of inertia about the spin (b3 )

axis, then (13 - 12) (13 - 11) <0, ? is imaginary, and the motion is unstable.

The prmvious model cannot be applied to a satellite since the assumption of a rigid

body cannot be extended to the spacecraft. Structural elasticity, liquid propellant slosh,

eic., cause energy dissipation in an actual spacecraft This spacecraft can be generalized by

a quasi-rigid body with an unspecified energy damper mechanism. A priori, one can

conclude that energy in the above system will dissipate until the minimum energy state is

reached. The kinetic energy of the system with spin about the pnincipal axis with m

monent of iera and spin about the principal axis with minimum moment of inertia can be
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wum pectively as

E = h2 Immaboutb3
2 la m (23)

E = I.2 Inaw about b3
2 1"

The angolar momentum is constant in the torque-free case. Thus the minimum kinetic

aengy state occurs when the rotation is about the axis of the maximum moment of inertia.

7herefme, a quasi-uigid body is stable only when it is spinning about its major axis, with a

cOespNd inemia ratio that is greater than one.

A relationship can be established between the time rate of change of the nutation

angle and the energy dissipation of a quasi-rigid, axisymmetric body. One must assume

that the angular momentum and moments of inertia of the quasi-rigid body do not change

appreciably from a comparable rigid body. For the generalized model, with arbitrary

ineras 1 = 12, and 13, Equations (5) and (6) are substituted into Equation (12) to obtain

m 2 0 = I (---1(2{13 E- h 2)V3 -1• II h2

The time rate of change of the nutation angle is determined by taking the derivative of the

above equation

s. 1 21,13 t fad (25)
sin(20) (13 -I,) h2

where the only rate of change of energy t is attributed to the damping mechanism and is

written as tD tow to emphasize this poinL Because tD sod is negative, the nutation angle

will decrease only if 13 is greater than I1. This reaffirm the previous conclusion that a

quasi-rigid body is spin stabilized only about the axis of maximum moment of inerta. The

foregoing develomne-t is refenrd to as the enery-sink method.
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B. DUAL SPIN SATELLITES

The logical progression from the single spin satellite was to incorporate a de-spun

platform. This permitted the replacement of the low gain omnidirectional antenna with

directional antennas for communication satellites, and a more capable spacecraft for

scientific observation. A simple control system about the b3 axis would maintain the

platform rotating at a constant relative rate with respect to the rotor ( and would usually

have the platform rotate at the earth's rotational rate). Initially, the platforms were

sufficiently small, and the overall dimensions of the satellite were such that the inertia ratio

woulc, be greater than one. For this type of satellite, the previously developed theory

proved adequate. However, as satellites continued to grow in size, the launch vehicle

shroud diameter became a constraint. In order to provide the size spacecraft needed to

satisfy mission requirements and still fit within the shroud, a spacecraft with an inertia ratio

of less than one (I, tota/Ias , < 1) would need to be built. From the previously

developed theory, a spacecraft with an inertia ratio of less than one was believed to be

inherently unstable. It was not until the development of the energy-sink theory for dual-

spin, quasi-rigid, axisymmetric spacecraft containing a driven rotor, developed

simultaneously by V. D. Landon (unpublished work) and A. J. lorillo [Ref. 1], that a

spacecraft with an inertia ratio less than one was considered feasible. Several rigorous

stability analyses using the equations of motion for specific dual spinners have been

performed by P. W. Likins [Ref. 2], D. L. Mingori [Ref. 3], and others, to validate the

energy-sink theory. The difficulty of a rigorous analysis is in accurately modeling all the

forms of energy dissipation. A more general and practical approach was required to

determine stability, and the energy-sink theory proved suitable. The development of this

theory is as follows.
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The spacecraft, shown in Figure (2), is sumed to fulfill the foliowing conditions:

oBo dthe rs' ,and the plamdfa arte axsym neric

SBoth the rmo nd tde platform we quad-rigid

* Te dinpn~mecanismos do Mo siiia n Alter die energ value, although
die mecMha- wi conu3bute wo en eIDy rat

No external tao s am applied

"* The only relative motion is spin about the b3 axis

"* The moua., driven by the conmol system, inputs just enough energy to exactly
offset the shaft frictional losses, maintainn a constant relative angular
velocity betwem the rotor and the platform

bsb3, b'. WS b

b"b92

b2

Dual-Spin Quasi-Rigid Axis et Spaeraft

Figure (2)
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N1
Mwn nmriike of the angular mmonufm and de kinetic eiergy of the dual-spin systm can

be expressed respectively by the following equations

A2 - (s..,o +(. +o,.÷•i,,')2 - 2go., e(+ (1, or+..,o, )I (26)

M+,4)12+tin,2I 2 +IG2I0D
2 2' 2' 2 2 '2(7

where a is the relative rotation rate of the rotor with respect to the platform. Although the

equations actually represent a rigid body system, they are also applicable to the quasi-rigid

system because of the above assumptions. If the damping mechanisms do make significant

contributions to the energy of the system, then Equations (26) and (27) do not hold, and

the eneW-sink criteuion will not apply. Additionally, the potential energy of the system

(for example the energy stored in the spring of a mass-spring-dashpot damper) will not

make a significant contribution to the total energy of the system. Therefore, for the

remainder of the thesis, it is assumed that the kinetic energy of the system is effectively the

total energy of the system (E=- ,,. Because the system experiences no external torques,

angular momentum is conserved. Because the motnr contributes no energy to the system,

the time rate of change of the kinetic energy / is represented by only the quasi-rigid energy

dissipation 9D tow, and is negative. Differentiating the above two equations with respect to

time, one obtains

0 A &o I: + (Is Ws + Is, Os,') (I, &, + Is") ti (28)

,t= 4DUJD w It .WW Oh + Is )4 + Is' 0),' 6.,' (29)

Eliminating the common term om w, by combining the above equations

t MtA"M -- 1" + is' Ws")1 (is + is") + Is 6s, +Is' w; 6' (30)= ,~I .t(30

One may now define the inertial nuation frequency, Ao, the rotor nutation frequency,

9



A. and tdo platfar nuti fiequency X', as follows

lo M is WS + Is cp" (31)

A - A-o,- - (i-s , isd)W + is'; W," (32)I, ,.,i

A - Aoe-W I,e,+(I,'-I,...,} (33)

"rhe nutrAt angle for a dual-spin sysum is defned as

- ( Cos-,b C)-cos- '(3+-h_.) -cos-,I(Im + Is'+WS) (34)

By ipoming the condition

4o>0 (35)

the analysis of nutational motion is restricted to the following region without any loss of

genemality

0o e0<5Z (36)

Inr g the nutation frequency urms, the equation for energy dissipation is written as

t = •D •e = AD+4D' - -sA 6o,-s- A' 6s' (37)

Recalling the assumption that the rotor and plaffonn are uncoupled about the b3 axis, we

may incorporate Equation (37) into the reaction torques which tend to change the angular

rates

A (38)
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O~nb~mgEqmuato (30), (3M and (38), ams maimv asth mwusaw re ite equelon

Is ~ AD, - (39)

atig Equation (12) and substituting Equation (39) into it. die time ram of change

of nuation angle as a function of energy dissipation ram is

9-M 2 1 &aw#A +D.! (40)

The energy-sink equation for a single spin-stabilized body is obtained by letting X and V'

become AD and tD + td become tD aw for a single body. The definition of stability

requires the nutadon angle 9 to remain constant or decrease as a function of time, so that a

is zero or negative. Because the factors outside the parenthesis on the right hand side of

Equation (40) are positive, the stability criterion for a dual-spin, quasi-rigid, axisymmetric

sysem becomes

__ (41)

One of the folMowing cases will guarantee stability

1) 1>0 and A'>O

2) A.>0, AL'<0, adIDIC
;V A

3) 1<,1>O n L -11tI
A specific example would be the model of a typical communications satellite, a prolate

dual-spinner possessing an inertia ratio of less than one. In general, the rotor nutation

11



frequetcy, owepmed as

I is l +. Is' WS, (is-it,.m) .+ I'." (42)

would be negative because (It - Is, o) is negative and ft,,,' if 1."' is rotating at the

eatnh's rotation rate. lhus, energy damping in the toor, &J would be ilizing while

energy damping in the platform, tD', would be stabilizing. It is from this result that

satellites will have a damping mechanism placed on the platform to improve nutational

stability. Such a damper is called a nutation damper.
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IL PROBLEM DEFINITION

A. OVERVIEW

The existing energy-sink theory relies on several pti perhaps the most

imporant relating to the driven rotor. As previously saed, it has been assumed that the

m owr driven by the control system, inpfts just enough energy to exacty offset the shaft

frictional losses, maintaining a constant relative anglr velocity between the rotor and the

platform. In actual systems, contrary to this assumption, the motor may add or remove

energy from the system depending on the dynamics of th spacecraft Consequendy, a

revised energy sink stability theory, propery accounting for the energy contribution of the

motor, is derived. The revised theory, based on the concept of core energy, will remain

consistent with the existing energy-sink stability criterion. Continuing, an equation for

nutation angle over time, as a function of core energy, is developed. Given a postulated

energy dissipation funicon modeling the nutation dampen, structural elasticity, fuel slosh,

etc., one can accurately predict the nutation angle behavior. Numerical simulation of D. L

Mingori's dual-spin, quasi-rigid, axisymmeri system containing a driven ro [Ref. 3] is

used to validat the revised energy-sink stability thed y. The predicted nutation angle,

based on this revised energy-sink theory, and the postulated energy dissipation fiucton, is

compared to the exact nutation angle of the Mingod system By using a suitable postulated

energy dissipation function, one can achiev excell agreement between the predicted and

the exact nutation angle. L Michael Ross (Rf. 41 performed this analysis on a dual spin

system with a damper on the platform only. The remainder of this thesis will use the same

analysis, but on the Mingori system with dampers on both the rotor and the platform.

13



B. INCONSISTENCY OF THE ENERGY SINK THEORY

T1he exists a ntradiction between the existing energy-sink tihey and the nutanon

angle derived frow it. This will provide the motivation for developing a revised energy-

sink theory and an alternative equation for nutation angle over time. From before, the

exisWing energ,-sink stability criterion can be expesed as

+ (41)

and the nutation angle for the dual-spin system was defined as

i~b.b3  -Cos-'(!..L• h3 Co-i (is 0+15.V' (34))

As previously stated, for a prolate dual-spinner (Is saw / 1w < 1), energy dissipation in

the platform is stabilizing and energy dissipation in the rotor is destabilizing. The angular

velocity of the platform about the spin axis, w,', can be expressed in terms of the angular

momentum and the kinetic energy of the system. Combining Equation (26) and Equation

(27), one arrives at

Oil I s ±A/ iS )2 h2 -2Isw E+I,02 (1,,&aflIs) (42)

Is ,t Vi•t S lo Is tow (4t) - Is WA

Substituting this expression into Equation (34) results in

8 = Cos-'i(:1:,• (43)

where a is repesented as

.(2 E-I,o2)4,,low + Is, (44)

h2 (I A.1 tM) It loaw- Is tow

Inital conditions at t = 0 will determine the correct sign, with continuity considerations

maintaining the sign for all of t > 0. Additionally, no external torques are applied to this

14



m, ug��Mngn DIfnnofEao (43) T in

A 4 1 (45)
( ý. a Si e a 12 1 I wa

From the definition of nutation angle, Equation (34), and the condition imposed on it,

Equation (36), the positive sign must be chosen in Equations (43) and (45). An important

observation is made at this time. Choosing the positive sign will result in a positive rate of

change in the nutation angle, indicating an unstable condition. TMe relative rotor spin rate is

an independent variable, and is arbitrarily selected here as a constant value over time.

Therefore, energy dissipation in a prolate dual-spin spacecraft will make the nutation angle

increase, regardless of whether the dissipation is in the platform or in the rotor. This is not

consistent with the stability criterion of Equation (41). Thus, the existing energy-sink

stability criterion contradicts itself.

C. CORE ENERGY AND ENERGY DISSIPATION

The existing energy-sink stability criterion does not properly account for any energy

that may be provided by, or absorbed by, the motor. To accurately represent the system,

the total rate of change of energy must be written as

-=•D•l+ W (46)

where W is the rate of work due to the motor, and may be either positive or negative and

the rate of change of energy due to dissipative elements can occur in either the platform or

the rotor. Recall that the kinetic energy of the dual-spin system was expressed in Equation

(27). If the work due to the motor torque as a function of time is written in analytical form,

then the time rate of change of the energy of the system due to all dissipative elements,

,tDOtw, can then be expressed solely in terms of the quasi-rigid parameters of the dual-spin

system. With this expression, the condition that tD mw., 0 will result in the required
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stability criterion. The difficulty arises in thn to ge the work due to the motor torque W

(or W), one needs to know the exact dynamics of the dissipative mechanism. In the

deveJolment of the modified energy-sink stability, Equation (46) will be used to determine

the exprssion for tD s,.o, and ultimately derive the revised stability criterion and nutation

ang equato

Additionally, the existing energy-sink theory can be shown to be incorrect for both

the case of total energy decreasing and for the case of total energy increasing. For

example, if the rotor is rigid and total energy decreases, Equation (41) predicts that the

system will be stable, but Equation (45) predicts that it will be unstable. Allowing the total

energy to increase would reverse the conditions, but still show a contradiction between

Equation (41) and Equation (45).

A modification of the energy-sink stability theory and the associated expression for

nutation angle is now presented. The development of the theory is from I. Michael Ross'

unpublished notes. The basis of the new theory is centered on the core energy of the

system. As defined by Hubert [Ref. 5]

Core energy is the total energy of the spacecraft minus the portion of the rotor
energy that is due to the relative rotation between the rotor and the platform. It
is assumed that the mass, inertia, and motion of the damping device are
sufficiently small that its energy is negligible relative to the spacecraft core
energy. The damper will be treated as an undefined 'energy sink' for the
purposes of the energy sink analysis.

From the above statement one can define the core body as that body whose inertial

dynamics are selected for analysis. Hubert defines the platform as the core body. The core

energy is simply the rotational kinetic energy of a fictitious rigid body that possesses the

inertia properties of the entire dual-spinner but moves in inertial space exactly like the core
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body. For a dual-sin upwmcsca the platform care ceery is defined as

jW 3~-'IWWW2+jjM2+11, A 1. 221,,, l(7
2 1 2 MMI 23M 2ul 2

The cont expresion is for an afittray dual-spin spaecraft wih the spin axis about the b3

axis, and the right expression is for a dual-spin, axisymmetric spacecraft with the

simplified notation. Extending this concept to fte rooor, the rzoto core energy is defined as

Necessary to the development of the modified theory is what will be termed the

Separation Axiom. This is when analysis is first performed with the rotor considered rigid

and the platform quasi-rigid. Euler's equations are written for the rotor, and through

manipulation, an equation is derived relating the torque on the quasi-rigid platform solely in

terms of platform variables. Then the platform is considered rigid and the rotor quasi-rigid.

An equation is derived relating the torque on the quasi-rigid rotor solely in terms of rotor

variables. These two separate equations are then combined and applied to a system in

which the rotor and the platform may both be quasi-rigid.

The case of a rigid rotor with a quasi-rigid platform is first analyzed. Because the

rotor is rigid, the torque applied by the motor to the rotor is the net torque on the rotor and

is determined from Euler's moment equations. For the case of the axisymmetric rotor,

TR - TRIM - Is (49)

One can observe that TPIM = -TRIM , but Tp * Tp since the damping mechanism

contributes additional torques to the quasi-rigid platform. The rate of work needed by the

motor torque to maintain constant relative motion between the rotor and the platform is

W - TR 0= Is 04 = Iscr(94,'+ ) (50)

By substituting the platform core energy, Equation (47), into the kinetic energy expression,
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Equation (27), kinec energy may be exressed as

-E " + -1., 02 + Is • or (51)
2

lhe above equation is ffMrentiated to arrive at the time rate of chanp of the kinetic energy

of de dual-spin system

t - - (52)

Substituting into this equation the rate of work done by the motor torque, Equation (50),

one gets

(53)

Comparing this to Equation (46), it can be seen that

4D ,,a, -EC" + Is O (54)

Taking the derivative of Equation (47) to get the time rate of change of the platform core

energy

SJ. = it,• Aw Oh + is.,• o" •(55)

and then substituting this into Equation (54), one arrives at the total energy dissipation of a

rigid rotor, quasi-rigid platform system

ItD ,ota = I: to,,t • • +I, ),' 0," +1, OW' 6 (56)

Because the system has no external forces applied, it remains torque-free. Thus, Equation

(28) can be used to eliminate the a 4 term and arrive at

4DoWW - (U, 4+!l a+,') [(l: tSOl- lS SOW) I' s a I '] (57)
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Ne ko do pkftm umsatimaa haency. Equamim (M an be written as

XMAOW= %+IS - W M r lw - s W) aw+ 1 or (58)
lt It I Is Ma

then Equation (57) can be written as

•DoW-- - Us 4+I,'4')(- - A* I,(- X,) (59)

Referring to Equation (34), the nutation angle can be written as

Cos 0 M is or + is' a (60

Taking the derivative and comparing it to the rate of total energy dissipation, Equation (59),

the following relationship can be established

-emsine= - 4+="'f (61)

Because the rotor is rigid, all energy dissipation will occur in the platform, such that

ED W MOsin 0 (62)

Equations (61) and (62) can be rewritten by including the motor torque, Equation (49), as

-IN 0 sin 0 = T.• + !s" •' - x--• (63)

Because Tp/M = - TRIM (action - reaction pair), the final relationship is written as

TPIM td+ s 4D01 i (64)

This equation describes the motor torque on the quasi-rigid platform as a function of

platform variables only. It can be seen at this point that the classical analysis can be
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acidevFd by asuminng no mque is aWplied by he molar, resulting in TpIM - 0 and

hLD -i' (65)

Ibis analysis can now be ;prformed on the system containing a quasi-rigid rotor and

a rigid platn It is observed do sct dihe body to be dhe ro and the body to

be the pltform is completely arbitrary, and no physical distinction exists between the two

bodies. herefore, by analogy, the equation describing th torque on the quasi-rigid rotor

as a function of rotor variables must be

TRIM U L + !4 (66)

Now let T;IM and T;,A, represent the motor torques on the platform and on the rotor

respectively for the system containing both a quasi-rigid rotor and a quasi-rigid platform.

Then the separation axiom would require the following two conditions

T;,M Tr= M td + Is' T" (67)

A'T~ =RIM + ., (68)

Once apin, since the sysem is an action - reaction pair

=;IM + TR* / 0 (69)

and then

S- ,+ 's ') 9 sin 0 (70)
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'MW y . dcs di9 • r o or be negativ us

S 0'

This is seen to be the wxsting energy mink criterion. Therefore, despite the pmence of

mator tonque, the existing stability criterion still applies Refamrng to Equations (67) and

(68). the second term in the equations would reprnt the torque applied by the damping

mechanism to the platform and the zom respectively. Equad (67) and (68) state that the

motor torque minus the damper torque will equal the net torque of the platform and the

amr respectively.

In determining the revised energy-sink stability theory, the energy dissipation

equation for the system with no energy contribution from die motor, Equation (37), must

be rewritten to account for the motor torque. Thus

t-4D wo + W =- -IsA 6s Is'X6s' (71)

Substituting in Equations (67) and (68), one arrives at

= AD +EAD-(A TRM+ XT;1M) (2

By assigning the motor torque values as

TM M =-T;,M (73)

then the above equation can be rewrtten as

t - t a1+W U D+tbD+TM(A-AL) (74)

Because the total time rate of change of energy dissipation equals the rate of change of

energy dissipation in the otor" plus that in the platform, the rate of work due to the motor
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torque must be

-TM(A A TMOa (75)

Referring to the example from Chapter 1, the prolate dual-spin communications

satellite, typically the rotor nutanon frequency would be negative and the platform nutation

frequency would be positive. For rotor spin-up TM > 0 and the motor torque would add

energy to the system, and for rotor spin-down TM < 0 and the motor torque would remove

energy from the system. For the arbitzary system, the motor torque, TM, and the sign of

the term X, - A (= a), would determine whether the motor adds or removes energy from

the system.

The rates of change of the energies of the system may now be repesented. Rewriting

Equation (46) to determine the total energy dissipation of the system

A•D ma = t- IV (76)

The rate of work due to the motor torque can be expressed by combining Equations (75)

and (68) (or Equation (67)) to arrive at

A XaW = ,'~~d, - o-t '(7) (77)

The rate of change of the kinetic energy of the system as a function of platform core energy

and system parameters was determined previously as

S= '+ia(6)" +&) + ios ao (52)

Substituting the above two equations into Equation (76), the expression for total energy

dissipation of the system may now be written as

4Dw -- tC" + Isa6, + )+ Iss r- a-_Is 6o (78)
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em.. #4' +- ant dii equdan ca be fmudhe simplified

4Dea - ý ( i S 79)

Comparing this equation, representing the system with a quasi-rigid ror and a quasi-rigid

platform, with Equation (54), representing the system with a rigid roaor and a quasi-rigid

platform, reveals an additional em, - a. The first term of Equation (79) represents the

rate of change of core energy, with the platform as the core body. The second term will

account for the change in eaergy associated with a change in the relative rotation rate of the

rotor with respect to the platform. The final term accounts for the energy loss due to the

quasi-rigidity of the rotor that is not represented in the platform core body expression.

The case that will be analyzed is that which occurs when there is a constant relative

rotation rate between the platform and the rotor. For the remainder of the analysis, let

6 = o (80)

and the total raue of energy dissipation becomes

A.

Further simplification can be achieved by noting that a = '- A. and from Equation (37)

that 4D WWa = 4D+Ad MThrefore

4D = +c'A - D(-d) (82)

which reduces to

tD + D (3

A similar development can be performed using rotor cm energy vice platform core energy.
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Theremikis

The is an expected symmetry between Equations (83) and (84). due to the arbirary

assitgnm t of om body of the system as the rotor and the other body as the platform. To

confm the ruts of Equatims (83) and (84). one must prove that when o is costant

km4.CI(85)

Takkg the derivative of the rotor coe energy, Equatim (48)

W tO I,,WS tit+ i,,,WW(W),'+ )O,+ 6) (86)

and similarly, for the platform core energy

t = is gM0)Wt 4+1, 60,'), (87)

Substituting Equation (87) into Equation (86) and noting that y - 0,

tc = 'c" + 1, , o 4, (88)

Multiplying through by the platform nutation frequency

-c c," + c , • wa+ A' a oi," (89)

andrec that Xg=A' A+ a,

4 "cX = c' A +Ac'G+1,W 'X a (90)

which is the same expression as Equation (85) if it can be proven that

tc' +IeisAtow 6,' W 0 (91)

Eiminatin the transverse angular velocity of Equato (47) by substituting in Equation
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h .(2. so + is' o )+2 (92)

Takng the deriatve

u s• W,. ,+, i 'W )( s6 +is ) +I,, W,• i~,•/ • f 'il,, (9:3)

and smplifying

(12 ).' o,,)II &, +g 1 Is '. Is, os o, ,2 WS, O s,) + Is tOta Is tow J Ws 6 s 9 )

Noting that i. "d - I + I' and recalling that i -&' because i = 0, the above

equation can be mduced to

al.. IS Wow (is eS +, i' WS'- it a, , o,/') .6 (95)

finally, invoking the definition of the platform nutadon frequency, one amives at

Tbeefore, Equation (91) holds and the revised stability citmrion can be expressed as

& = = & •+ : o (97)
A x A A'

A few reuma can be made concerning this stability crierion. Tbe third expression is the

existing energy sink stability critern. This criterion must equal the stability criterion as a

function of the max core enagy which must equal the stability criterion as a function of the

platform core energy. It can be seen that one no longer needs to know the energy

dissipation rates in the platform and in the ro" to determine stability. By knowing or

postulating the core energy over time, the stability of the system can be determined.
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Continuing with the prolate dual-spinner example of Chapter 1, any one of the above

exrmsios apply. For a stable system, the rotor core energy will be positive, and increase

over time. Additionally, the rotot nutation frequency will be negative, resulting in a

negative expression for the rotor care energy stability criterion. The platform core energy

will be positive, but will decrease over time. The platform nutanon frequency will be

positive, resulting in a negative expression for the platform stability criteron. According to

Equation (97), the platform and rotor stability criteria must equal one another. From the

numerical simulation of a dual-spin quasi-rigid axisymeuic system, the roor and platform

care energies as a function of tim will be determined and graphed.

D. NUTATIONAL MOTION

The development of a modified expression for the nutation angle as a function of time

may now be presented. The actual nutation angle of the system is defined as 6. The

nutation angle as a function of platform core energy will be represented by r(, and the

nutation angle as a function of rotor core energy will be represented by q. The derivation is

similar to the one previausly given in this chapter, except that the total energy of the system

has been replaced by the core energy of the system to eliminate the transverse angular

velocityo•. The derivation for the platform core energy will be shown. From before, the

angular momentum of the dual-spin, quasi-rigid, axisymmeu'ic system is
h2W= 2= Jg+ (1, or"+ !, Wgg W) 2  (26)

Combining this with the platform core energy, and solving for the platform angular velocity

about the spin axis

Is toW (Is to- It toW ) a )3'2 - 2 Is l.I or 3" +1.2 o2 + 2 Ec'I¢ l , - h2 = 0 (98)
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Said

•" {.- 1,,,,,,) (99)
V1 Wd Is.,) V, Wa - ip $;;)Is, lf,

Q". 2EV'l,.v(l-n. ..,I)-k " •)( i-sw + .)+() o (100)

The initial conditions a t =0 will determine the popr sin of Equation (99). As before,

continuity will enmm this sign for all t > 0. Substitting Equation (99) into Equaion (11)

it W -IIs+3 +Is co0!) f h w j[,O (101)

The me rat of change of the nutaion angle will detrmine the stability. Differentiating the

above equation results in

(102)

A stable systemn would require that the lower sign be chosen for the radical, thus

-,_j' W t[,. o-],) (103)

When this sip selection is applied to Equation (52). one ges

O3'(I, .WI- I . )+ .V + '.L () (104)

This can be reriMen as the well established dual-spin stability condition, as written by P.

C. Hughes [Ref 61,

(It wd - Is swd) O03' + Is 0 :5 0 (105)

It is impnom to note that this analysis does not produce a contadiction to Equation (41).
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b a gndi mm - tUe annodrtled nnoam•mqk a cm be daived with nspect v dh namr u

&I

S[,'r(106)

a ~ ~ I ;Z EI 1 8l~ )h(aamj( ~~ai+~~wLl2 (F2 (10y7)

Tbheom, if one is give ds core emwg or de posauatod core e rU as a function of

t&mn, the noudonal toodon cma drn be dermined This bads to an extremely imporant

conclusion. By detmining a mufficiaemy accura postulation of do ce eergy of a dual-

spin, quasi-rigid, axiwsymetric spcecraft over tims, one can predict the nuwtional

behavior and the stability of that spcecrafL Nuumical simulation of such a system will

conram this conclusion.
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!11. DYNAMICAL EQUATIONS

A. MINGORI DUAL-SPIN SYSTEM

de• of the Imt'vious duqlms washy pmend in mmmn• and applies many

du•-spia • wia• an mbiumy damp• m,•tuumm. D.L. MinSmi's dub-spin

system [Ref. 311xvvided the needed model required u) valMme the Ira)posed mbility

theory, Figure (3). Additionally, the compleu• non-linear equations of motion were

pru•nwd by Mini•ri; howev•, the expmsimm for the inqx)mm lmrmnmen in attitude

dynmnics, angular mommmm and kinmic and mml eam1•Y, wme no(• in his pap•

aund had in be deriv• befo• any analysis €ould be pezformo•

The Mingori syslmn is comprised of two symmaeuic rigid bodies, the lower which

shall be defined u the n)mr, and the upper body shall be defined as the platform. By

•onvendon, all m'um •$ m d•e • wiU be Ihe mune nouuion as that of the rotor,

mu:ept dm they will cmy d• pdme mink. Bo• the rmm' and the plaffm'm hav• •

axes fur• m •he body and loca• m th• • •nms o• mass. "the dimnce Imween

the cen•ers of mass is specified by L. The cadre spacecraft has €omdina• axes fixed to

the • ©m|m" of mass, dmoed by the double l•me wm'dinm• axes, and romdng in
I•sm•mmm•u themwcoordin•axm, The comdinm• axm b•. b•', and b3"are all

€ollinem'. 'rhe spececr• ceem'•nmss wfllvary adong th• b3 axis u the point masses in

fl•e nxor and the I/affonn osm'lla• The only reladve motion of • plaffm'm with respect m

the rowr is angular rotation about the b3 axis. A motor driven by • control system

nmintainsaconsumtrehnivenxatk)nra•o. The angle between allne pandlelto bs and

Imssingdnugh theplaffmmcea•ofnms, mdbl"is••ed by • = •t.
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Bach body contains a mass-pring-dashpot mechanism. An actual spacecraft

udmergoes damping frno various mechanisms. Undesired damping can occur due to

muctural elasticity and liquid propellant slosh. Nutation dampers ae incorporated into

spacecraft to improve the ntational motion. The dual-spin ymmetric system with

mass-spring-dashpot dampm cannot accurately model an actual spacecraft, but is used to

illustrate and validate the theory. A description of the rotor is as follows. The mass-

spring-dashpot mechanism can be modelled by a particle mass mlI attached to a spring with

constant k inside a tube filled with viscous fluid with damping coefficient c. The motion

of the particle is constrained parallel to the b3 axis only. At rest, the particle mass lies

along the rotors bl coordinate axis, at a distance a fron the rotor's center of mass. Three

balancing masses, m2, m3, and m4, each equal to the mass of the mass-spring-dashpot

mechanism, are rigidly fixed a distance a on the b2, -bI, and -b2 axes. These masses

maintain the axisymmetry of the system about the b3 axis. Displacement of the particle

mass mi is denoted by the variable z. A simplification in this paper of the Mingori dual-

spinner system is the assumption of a massless spring-dashpot system. Thus the particle

of the mass-spring-dashpot system, ml, is the same mass as the corresponding three other

balancing masses, m2, m3, and m4. The platform can be described in a similar manner,

with all notation modified with the prime maru

The dual-spin system center of mass coordinate axes rotates at the same rate as the

rotor coordinate axes, but is located along the b3 axds at a distance zm from the rotor center

of mass. This distance will vary as the particle masses are displaced. Relating the dual-

spin system's coordinate axes to the rotor coordinate axes was arbitrary. ]Equivalent results

would be achieved by selecting the platform coordinate axes instead.
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B. ANGULAR MOMENTUM
w -,angular ummeam of the dMiqoi dmul-spnq•a• -igd aic se

nw daived from firs praks.

Mwe angulr momentum (mnment of monum) of a prtdcle of mas mj located in

body B is defned as

hi W ri x MiV (108)

where bi is the angul" momentum of the i th paik with respect to the system center of

mas, rj specifies the k lotn of the i th particle with respect to the system center of mass.
a Nd i dd is the absolute velocity of the i th paticle with respect to the inertial

r ef frame Nr. Exprssing the absolute velocity in the system refeence frame

M-ei N.M M--8
V n + ti + w x ri (109)

where B represents the reference coordinate axes of the system. For the following

derivation, all displacmets and velocities are refaernced with respect to the rotor (bk)

coordinate axe& The angulr momentum vector is rewritten as

bi =ri xmi(NVhIM+ ta+ to x rj (110)

Applying this equation to particle I with mass ml and position

r, = a b, + 0 b2 + (z- z0 .)b 3  (111)
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(112)

0 a2 +(z- 0 02 +

0a~ 0 e) 0a 31b

0-a (z - Z.) 0 VMx0b

[(z -Z) 0 -a ve y +.ai~~ -4 w Ib3I

For the rigid body, Equation (110) is applied w a diffmt volme at ocation

rAm = u b, + v bz + (w -zc,) b3 (113)

Integrating One sives at

[li+M ZAK 0 0I
=/L 0 0 13 Oh b,

[0 (M (114)V
/- . 31

0L o 0o 0 VC3
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Siuim caklc.atlous an performed for fth numwnn seve, porn: mese and die phdtorm

Fcr due n ý m, one wives at

ha 22 - 2s )

*(2e2a244JL) 00BN

-ma 0 (Is +i. 0 2 0

-m.:0 Ista

+ (Mai } (115)

0 (M +4 m) (,.) 0. jVMS

_ x0 0 Viny

L 0 0 0 ml
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(116)

n j

Ii+ 2f(ieQ- m)4

OW a ' tCos (a t) -N' d' e sin (a 8) I3'+ 4 ne 4

+[-owe V'acn(Vt)zx'+m'a' Si(VI)i' 1 b2
4/e + 4 Ne e2) O'cr I

0 -1M'+ 4 Ne11(I- z,1 0 vM,
+ (('+4,,,)(M-,.) o me .,

L 0 0 0 Vans

The angular momentum equations have terms corresponding to the velocity of the

center of mass. Angular momentum, when taken about the center of mass of a system, by

definition must be independent of the translation of the system's center of mass (with

respect to an inerial reference frame). To verify that this occurs in the above equations, the

equation for the position of the center of mass is substituted into the center of mass velocity

terms, and the these equations are equated. If they have the same magnitude but opposite

sign, they will cancel each other out and it will be proven that the system angular

moentum is independent of the translation of dhe system center of mass.
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OW mutprove

- .M . 4 (117)

Iold bg at te b, one finds

- [(1 + 4 W.) (- I.,-z.) - me, e'] I- [(M.. 4 ,,) z. -, m, (z]

Rewfiting dds, one obtains

(M'+4m')l +mz+m"z?-(M+4m+PI +4m') zC (119)

The cenerof mass widt reference to the b1i b2, b3 cordinate axes is

1i zi+RRz1  mz+(A'+4m')l +me'z

Zcm = (120)
Mi + mi M+4m+M'+4m'

Substituting Equadon (120) into Equation (119) results in

(Ar +4m'), +mz+.z' L (M+4m.+W+4 1m) M+(Ar+4m')I +Mý (121
(M+4m+M'+4m"

This reduces to

(M'+4m')l +mz+m'z' = (M'+4m')l +mz+m.' (122)

Therefore, the angular momentum along the b, axis is independent of the velocity of the

center of mass. Verifying this along the odter axes can be done in a simila manner. This

proves that the angular momentum of the entire system about the system center of mass is

.dendent of the translation of the system center of mass. The angular momentum of the

entire system can be written as

k =hM+4n+ Itr +4ne m(123)
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It + M +.( 2a 2+44.1 0 -ma: *

2-:2.2s1m) 122 ) 2 (124)
0 1(2a2. x 0 j

-max 0 13+4m2 WJ b

0 
b

00

It'+''o~ : Ain Y a'Y+ e z' coo (a I)l~..

02~~~~b +j 'P-X)a

0 1' + sAf ' m''(I R )S in' ( 1 )0
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C. ENERGY

The kinetic energy, E, and the total energy, Ew, are now derived. From first

n fd kined ergy of a differential pricle is written as

Ed.- IN" "I1n =I-(( NOd.) (126)

wher tie absolute velocity is defined from before

N + td. + x rd. (109)

The kinetic energy of the Mingori system is determined by integrating the differential

kinetic energy over the rotor and over the platform, and summing the differential kinetic

ener equation over the eight point masses to arrive at

EN J") ,+ -I((Ni~i). (NiVL))miq

(127)

Ptforming the steps on particle m Ithe following is obtained

(128)

2•(N•=. •j+(N.1. + rj 2 {O(N-•=.x rl))+ 2 (N.cmxri))

Substituting in the values, one arives at

mvL+ ,,+ V2" I+(ijCmf + (Z- ZCm) 0+)

a2 a + (Z _,Z o2I -2_a (z-zc,.) 0 w3 +
El = •m• a2 wj+2(i Vcm c= as V,)+ (129)2 2{zeW .z"- z,0)2 Vo"+aow Ve-v+- +

Zwl Vmy+zc m0i Vemy-ao2 Vcuz

2 (-a i w + a kic w2)
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Thu mapil'a &M pIxmI 11o w Ursodhe thus puddes; in ftn rowr Nrfonzirrn

w aswsuoim odyofhem,

(130)

EM.1 (O~ - O=) (t tj +( (~m xr I ftmx ri))+ )dM-2 12 O mi. -, fl)+ 2 r.,. -(N-u x .x, ))+ 2 (t,. 1 (N• x r1 ))

Substituting in values, and specifying the position vector of the differentitl particle as

r =- u b, + v bI2 + (w -z4) b3  (131)

then

(132)

v + 1, ÷ V2.,÷+2. + W2 Vz -_2 wz. o)2 +
.mO)+V2aq-2wv &20)3+211Zc3 I0203+W220)+

Em= VZm +2 -2 w zo ?- 2u w w, o>3 + 2u zcm. ,u w3+ dM
2+ 12 o2- 2 v u o), 0V2 + U2 0)q + 21(-icn Vc" J)+ + d

2(W 02 Vcnx- Zt-• 2 Van- V 03 Vcn- w a VCM +I+

zc,, tI Ve, y2+ ( W3 Vcy,, + V 9)1 Ve, x- oJ2 Vcm x2(-vi,, el+ui.,• w2)

Integrating over the limits of the symmetrical body, the kinetic energy of the rotor becomes

vCM x+ V.27+ V.2 + + Z&+.(W2 + g)+1
EM- 1 =IMIW2+12 0)?+13 ?- (133)2 1

These same steps are performed on the platform and on the remaining seven panicles.

These equations are then combined and simplified.
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The uowl kidc energy for tde Mingri syuhem is

(134)

jMaWm(VC2. x+ V=2.. Vej+
½(,.;,,+ .,, o+3&)+•(. ;I,2+1,&q++,,,€,+ + )+

2 12 1

2_(2 ÷Z2 (a? + of)- 2aza, 3) +

2(1+' 0(2,)-2,,'ee"o,(,,), ,3+2dein(or,) ,,)+

M(-ad+o,)
E m '(- d Y €os(ort) w2 + d Y',in(crt) w, - • z" arco,(vt) oh - d" z" a sin(crt) w2)

+ (1 +e,)(mz+m',"f-(mi+f,, +'
SM T+

(I + of (M +4,,),,1, +4m' +
2 M r

I.,(~ + aq)• ( +., 4 R)-1(• + 4,.M12
moa) (M z +mz+ ( + 4m') )

2 q(.+o)(!z+mV-~(M +4m)I)

The total energy of the Mingori system can be determined by adding the kinetic

energy of the system to the potential energy of the system. The only potential energy of the

system is the energy stored in the springs of the mass-spring-dashpot damper. From

Hooke's law, the system potential energy is written as

U(z) = ILkZ2+1.rZ' 2  (135)2 2

The total energy of the Mingori system is then

- E+U + E+4-kz2++k¥z2 (136)2 2
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D. AMINORI' EQUATIONS OF MOTION
MIagais equadalis of modam [Re 3] wre wrime as follow

ih-A e -COJ2w3-J3'ffw2+2MrCCG,+MT C2(O? +W2 03) +

- 2(C-li1)[Z'(dih - 0203) +k Y1] +
jZ[-2ýeii+2YI'1 +z'(iil-0 23)-do W(t3+0lO)2)]+)mo

A oi2-(C-A)ao 03-131o+2MTC 0+(2 + oh W3) +

1 -(C+ 2) Z J2 W 03 +i 01+ (137)

d Cs (!+ '[(ft+ f w2]) -a'sin Wz'(ii3- w1 2)
C o3- m a[2 wl+z (61 -f 3

m' d sn [2 Y'i+ z'(Cit + WI 3)]=O

m(1 -p)I-m'pi'-ma(oi2-ei w.)-

- m pr !+m'(I -pA)r +
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Air Mr

I~ M7 (M I~ (E M (138)

A I1,+I1,'+ 2 na2 +2mbWa4 + (M+ 4 n)(1 VI 12

C a I3+I3'+4N3ba2+41nj,'E

J3' a 13'+ 4 nI'U 2

IhVerJ discusses how fthse equation m adapted far use in the numnerical integration

routine.

E. NUTATION ANGLE
The nutdaon angle of the dual-spin system can be detcnnined by substituting

Equations (124) and (125) int Equation (34) to arrive at

(139)

(m a z-me d Zcos(o:s))ow, +

)amlCOS-i( mcf.l (3+4ma2+131+4mWa2)o,,

+(13+4mda2) V
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F. CORE ENERGY

The p1 Warm core energy and the zoor -r energy were defined in Equations (47)

and (48). The nutstion angle a a function of care energy was then developed and is stated

in Equations (101) and (106). These equation can be used to predict the nutation angle of

the system as a function of time. Because the core energy as a function of time is not

available for the prediction, a postulated core energy must be developed. The initial value

of the actual core energy and the postulated car energy must match and is dictated by the

initial conditions. Parameters of the postulated core energy must be selected to accurately

model the actual core energy, to include the final energy state and the rate at which the it

appoasches the final energy state. Two models were considened.

1. Exponential Core Energy Model

An exponential representation of rotor and platform core energy as a function of

time ae expressed as follows

-c poau ta (Ec.- Ec ,j)-) + Ec.ina (140)

Ec wd (t) & - Ec f.1) e(-t) + & fs"a (141)

Tbe initial care energies, Ec4 . Eac0 , arc determined by the initial conditions of the system.

The final core energies, Ec ,",, EcrA'. as well as the exponential factors r, r', must be

selected. The methodology for selecting these values is explained in Chapter V, Computer

Analysis.

2. Verhulst Logistic Core Energy Model

The exponential model, as will be explained in Chapter V, has excellent

agreement for stable conditions, but performs poorly for the unstable conditions. As an

alternative model, the following first orer differential model is selected for the rotor and
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Ecpasw@CJ(E~w)(142)

&:. + (Efj- &4e.) C(-e')

This type of equation was firs introduced by P. F. Vehulst to model human and

other populations [Ref 71. ht is often referred to as the Verhuist equation or the logistic

equation. Although population dynamics appears to, be unrelated to the stability of a dual-

spin system, the behavior over time of this equation compared to the stable and unstable

systemi provides some insight. Figur (4) shows the Verhuist equation versus time for

vayn inital amitodnO

160Verbuis Logistic Growth Model

140 N4 o

K 100

K 60

240

0 10 20 30 40 so 60 70 s0 90 100

Ftgure (4) Verbulst Logistic Equation Versus Tlime



It cn be nod that if the initial value of the variable (m our case core energy) is

geaser than the equilibrium value, it will qpach the equilibrium value in a manner similr

to that of an exponential decay. For initial values that awe less than but within one half of

the equilibrium value, the variable will asymptotically approach the equilibrium value. If

the initial value is less than one half of the initial value, the varable over time has a

smwht different shape as it approaches equilibrium. Initially dte slope is very smal, but

increases to a maximum at about the one-half of the equilibrium position. After this

inflectm point the variable approaches equilibrium asymptmcally. The value of No equals

K is an asymptotically stable equilibrium. A value of No equals zero is an unstable

equilibrium. If the value of No is slightly greater than zero, then N(t) will, as i -+-e,

achieve the stable equilibrium of K. These types of curves will be utilized to describe both

the stable and unstable dual-spin system. The initial core energies, Ecg. E&.', would be

determined by the initial conditions of the system. The fmal core energies, Ec i.W,

Ecfra', must be known or a best estimate used. The exponential factors, r, P, must be

determined experimentally, and are a function of the system parameters and initial

conditions. Chapter V provides additional details on the selection process.
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IV. NUMERICAL SIMULATION

A. NUMERICAL SIMULATION EQUATIONS OF MOTION

The equatons for the d•rnical quantities neded for aadysm of the dual-n

systm were Pv ly developed. Manipult was quired to make dme equations

suitsbe for numeical. analysis, and is described below. Te computr code is included as

Appendix B.

1. Mingori's Equations of Motion

The equations of motion for the dual-spin sstem ae listed as Equation set (137)

and (138). The Runge-Kutta numerical integration routine necessitaud that the equations

of motion be a set of first order differential equations. Mathemadcal manipulation was

required to put them in ths form Variables representing groups of temsn (Ai, Bi, Ci, etc)

were introduced to simplify the manipulations of the equations and provide a suitable

format for incorpoatin g the equations into the computer program. Mingori's equations can

be expressed in trms of these variables and the five timediendent variables of motion

A26 ih + A27 63 + A24 1' + A2-O 0

B25 62+ B23 6 + B13 1+B21V+ B2.6=O0

CIO i + C5  + C + C1n-0 (14)

Di 1 +D2 r'+D3 4 +Ds =0

E,1+ E2 !'+A ih + Es 4 + E1 -O0

where the variables Ai, Bi, Ci, Di, Ei, Fi, and Zi ate defined in the Notation section.

Clearly, these equations are highly coupled. Through a series of manipulations, including

substitution and combining sets of equations to eliminat common variables, one can arrive
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at a mira ofi re •d• kre eqmdm vikebb fo numaW bfgmo seckm
A . - --

dk

•a~

z4Qa Z2 +~I• +Z-3 +_,

D3 +_D3 (145)
"Z2+ Z4 + z+1Ds D3

-F2
,2l Fi D3+R DL ZI+

Z3 + ~ IZ+
.Y- _•3 D3

D3 +sR2D3

dOZl += DL Z )3 ,+26do NC B23 C A26  C'B2 s C A26  C Bs C
Clo CpA27 Cs B23
C A26  CB 2

.• _ • = _ Aal#.• _g• ,_A.
A26  A26  A26

B 25  B25 B25 B25

The equations remain coupled, so the sequence in which the equations are numerically

integrated is important. Because the equations for 1 and the equation for i' are functions of

z and z', z and z'must be inte4gated fir. Similarly, 1 and i' must be integrated before it,

4 before if, and ch before 4. In the computer program, the seven variables that

describe the motion are stored in a seven column matrix where ah = Y[lJfl, c) - y[21 [I).

ab - Y1310), z - Y14101, i -= Y[5JI], z' -= y1601, and Y' - y[710). The index j identifies the
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auix location for each set of saved variables over time. All other needed quantities can be

calculated by using the seven time dependent variables describing the modon, and the.

p t of the dul-spin system. These additional dynamical quantities are stoed as one

dimen al vectors in the computer.

2. Angular Momentum

Angular momentum was derived in Equations (123), (124), and (125). The

angular momentum is a vector, but for verification of the conservation of angular

momentum, only the magnitude is required. Therefore, the three vectorial components for

both the rotor and the platform are computed individually as H1, H2 H3, Hip, H2p, H3p,

and then the magnitude of the angular momentum, h]g is determined and stored.

3. Nutatlon Angle

The nutation angle is determined using the previously determined relation

Cos- ~~(h b3 ) = co5-I (Lh3 +kI') = Cos-,(Is SO+ i' WS,(3)

Since it is a function of angular momentum, it can now be calculated and stored as

theta 0l.

4. Energy

The total energy of the system, Equation (136), is determined by the sum of the

kinetic energy, as derived in Equation (134), and the potential energy of the particle masses

of the mass-spring-dashpot damper system, Equation (135). It is written as
Etow - E+U = E+l kz2+1lk'?z2 (136)

2 2

In the computer program the kinetic energy, ke [fl, is the sum of the constituents of

Equation (134), identified as Ti through T13. The potential energy is not explicitly stated

in the program, but instead is included in the calculation of the total energy, motal rg.
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S Core Energy and Postulated Core Energy

The platform and rotor core energy of the dual-spin system is defined in

Equations (47) and (48) respectively. All of the variables are available, such that in the

computer program the energies are readily calculated as Ecp [U and Ec Mi. The postulated

nutation angle may now be computed. Equation (101) indicates a sign must be selected

depending on whether the system is stable or unstable. The calculation of nutation angle

over time in Equation (34) will indicate stability. The computer program incorporates

conditional statements to assign the corect sig in the postulated notation angle expression,

Equations (101) and (106). In the derivation leading up to the postulated nutation angle, a

has been defined as the relative rotation rate of the roto with respect to the platform, and is

a positive value. This provides a positive contribution to the angular momentum vector,

thus providing stability to the system. In Mingori's equations of motion, the reference

coordinate axes are fixed to the rotor, resulting in the relative rotation of the platform in the

counter-clockwise, or negative, direction. The postulated nutation angle equations were

developed using the former reference frame. To compensate for the difference in the

reference frames, the postulated nutation angle equations in the computer program have o

replaced by --a.

The postulated core energy as a function of time is computed for the platform and

the rotor, using Equations (140) and (141) for the exponential model and Equations (142)

and (143) for the Verhulst model. A postulated core energy model that accurately models

the actual care energy required several iterations to find the proper values of the exponential

factor.

Once the postulated core energy models are computed, the 0' and 0 values, as

defined in Equations (100) and (107), are determined. The postulated nutation angles,
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etah , and eta m, are computed using Equation,- 101) and (106) with the proper ign

previously determined.

The revised stability criterion, Equation (97), requires the time rate of change of

the core energy and the nutation frequency. Since both of these parameters may vary with

time, an estimate is made to determine if the modified stability criteria correctly predicts

stability or instability. The time rae of change of the core energy is approimated by taking

the difference of the final and the initial core energy values, and dividing by the time of the

simulation. This quantity is then divided by the initial nutation frequency. This stability

quantity is computed for both the rotor and the core, but is indicated in Table (1), Summary

of Analyzed Cases, simply as a negative or positive value.

B. COMPUTER PROGRAM

Essential to the verification of the stability criteria is the computer program that

integrates the dual-spin system equations of motion, calculates other dynamical quantities

of motion, and graphs the results. The system used was a Sun SPARC 2 workstation with

the computer code written in C. Intermediate graphics results were created using an in-

house computer graphics program. Final graphics output was performed by sending

output data to the Deltagraph graphics package. The sequence of steps of the computer

code are explained below. The computer code is included as Appendix B.

1. Initialization

The main computer program is compiled, along with the header file 'rkk.h' and the

function 'derivs' immediately preceding it. The function 'derivs' contains Mingori's

equations of motion rewritten into Equation (145), suitable for numerical integration.

Included in the header file 'rkk.h is the numerical integration routine 'rk4,' the adaptive step

size fumction 'rkqc,' and the driver for the numerical integration routine 'odoint.' Also

included are functions for creating and freeing the vectors and matrices used by the
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compu" to stom the daa, and a functim for em messages.

a. Vda •bis

The variables required for both the numerical integration routine and

subsequent calculations are defined as global variables before the main program. Variables

used only within a specific function or only in the main program are defined in their

respective functions. Symbolic constants awe also defined before the main program using

the *define statement.

The time dependent variables of motion of the Mingori system,

oh, ah, a)c, z, i, z', i', are stored in a seven column matrix. All other parameters to be

graphed are stored in one dimensional vectors. Storage in the vectors and the matrix

permits retrieval by the graphics subroutine for plotting the variable over time.

b. Input File

The main computer program scans the input file for the necessary parameters.

All parameters of the Mingori system, 11, 12, 13, M, m, a, k, c, 11'" 12', 13, M',m'" a' k',

c', and L, are controlled with the input file. Also, the initial conditions for the time

dependent variables of the system, wj, aw, a,', z, 4, z', i', are specified. The length of

time of the simulation and a variable determining the desired accuracy are specified.

Finally, the exponential factor and the final energy for the postulated core energy functions

are read.

2. Preliminary Calculations

After the input values are read in, initial calculations are performed prior to the

numerical integration routine. All of the defined terms used by D. L. Mingori [Ref 3] in his

non-linear equations of motion are computed, as well as definitions required for the core

energy calculations, 1s, 1s. Is tw, It., I', It t,, and h,.,i.

An option is available to specify critical damping in either the platform or the
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rotor. By using the number 1000.0 in the input file for the damping coefficient, the main

program will automatically compute the coefficient required for critical damping of the

mass-spring-dashpot system and then use this value in all subsequent calculations.

Also computed is the factor 'dxsav, used in determining when to save data. The

steps between evaluating the equations of motion can become small, particularly when high

accuracy is desired. The interval required for graphics resolution is not as restrictive.

Accordingly, the variables are saved only if the step is greater than the previously saved

step by the factor 'dxsav.'

3. Numerical Integration

Mingori's nonlinear equations of motion are numerically integrated by the fourth

order Runge-Kutta method, with adaptive step size control. The computer code used is

based on the Runge-Kutta method listed in Numerical Recipes in C, [Ref 8]. The adaptive

step size control permits larger integration steps during smooth, well behaved portions of

the functions, and smaller steps during the more irregular sections of the functions. The

integration routine accuracy can be controlled by a variable in the input file.

Mingori's non-linear equations of motion are contained in the function 'derivs.'

As described previously, the equations have been rewritten as a series of first order coupled

differential equations suitable for numerical integration.

The output of the time dependent variables of the system, oh, O02, W3, z, i, z', i',

is stored in an array of seven columns, with the number of rows required a function of the

specified time interval and accuracy. A one dimensional vector is also created, with the

time stored for each step saved. This permits plotting the time dependent variables and

other quantities versus the time.

4. Calculation of System Parameters

With the array of the time dependent variables of motion as a function of time, the

other system quantities listed in Section A may now be calculated, with the values stored in
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vector suitabl for graphing.

S. Graphics Output

The remainder of the program is the necessary code for the in-house graphics

program. The graphics program is initialized, and the graphics window is opened. The

following parameters are then plotted over time: oj, 02, w3 - w3 jj--, z, f, z', i',

h - hmwa.~ij E - Ejwgg~j, Egwj - Etdu&,E - jEjgmod. Ec eauiaat - E6 pomaaa&wa.~uug,

- Ec 6"" Ec p - E k 0,11, and it. The window is then closed

and the initial conditions and pertinent time dependent variables and other quantities of the

simulation are then printed. This displays the graphical representation of the behavior of

the dual-spin system, and provides the actual initial and final values of the variables and

associated quantities.

For final graphics output, the Deltagraph graphics program is utilized. Computer

simulation data is sent as an output file. The data is then manipulated into a suitable graphic

with proper scaling and axes limits to best represent the dynamics of the computer

simulation. The graphs are contained in Appendix A.

6. Computer Program Validation

The two aspects of the computer code requiring validation were the numerical

integration routine and Mingori's equations of motion with its associated dynamical

quantities for the dual-spin system.

The validation of the iamerical integration routine was performed by using the

equations of motion for a simple torque-free axisymmet'ic body. Various initial conditions

were read in, and the dynamical quantities were then plotted versus time. The plotted

behavior was then compared to the actual response of the system.

The validation of Mingori's equations of motion and the associated dynamical

quantities required a more comprehensive approach. The equations of motion required
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validation for proper behavior of each time-depedet variable of motio. Then the kinetic

energy, total energy, and angular momentum must be verified. Several cases were run

where the platform mass and inertia would become infintesimafly small Then cases wae

run where the rotor mass and inertia would become infinitesimally smalL In each of these

cases, subcases were run where the mass-spring-dashpot system would be large,

dominating the dynamics, to the subcase where it became very small, so the system

approximates a rigid body. These different scenarios would uncouple and isolate the

various parts of the equations of motion to verify proper derivation of the equations. In

general, the platform and the rotor were tested under conditions varying from those in a

rigid body scenario to those in a lightly damped body. The system was then tested as a

rigid dual-spin system, as a dual-spin system with rotor damping only, and as a dual spin

system with platform damping only. The dual-spin system was then tested with both the

rotor and the platform containing dampers. For each case, the time dependent variables of

motion were plotted and analyzed. In all cases, the angular momentum was compared with

the initial angular momentum. Since all cases were torque free, the angular momentum

must remain constant. In all cases explored, the angular momentum verified the

correctness of the equations of motion. The code validation cases were not included in this

thesis due to the large number of graphs and data that were required to establish validation.
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V. ANALYSIS

A. INTRODUCTION

1 Objecve

T dveomnt of the revised energy-sink stability theory has been presented in

Chap H, Mand the equation of motion for a dual-spin system are contained in Chapter m.

With the numerical integrato code of Chapter IV, the rvised energy sink stability theory

can now be verified. The core energy of the system is plotted as a function of time and

compared to the total energy for agreement with theory. The stability criterion computed

from the numerical simulation must then agree with Equation (97). Conservation of

angular momentum is used in each case to verify the corwmess of the equations, and to

ensure the accuracy of the numerical integration routine. To approximate the core energies

over tame, an exponential model and a model based on logistic growth are then explored.

The logistic growth model uses an equation presented by Verhulst [Ref 7], and is referred

to as the Verhulst model. Postulated models of core energy and the associated nutation

angles arm then compared with the actual core energies and nutation angle for agreemCnL

2. Numerical Simulation Cases

Four distinct cases needed to be addressed. With the inertia ratio of the dual-spin

system greater than one, a stable case and an unstable case are analyzed (Cases (1) and

(4)). With the inertia ratio less than one, a stable case and an unstable case are also

analyzed (Cases (2) and (3)). For these four cases, an exponential model is used to

postulate the core energy and the cotresponding nutation angle. For the case of the inertia

ratio greater than one and unstable, and the two cases of the inertia ratio less than one,

stable and unstable, the Verhulst model is postulated (Cases (5), (6), and (7)). The case of
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the mrda rao greater than one and stable was not included; from the excellent agreement

of Cases (5), (6), and (7), one can see that excellent agreemnent would also occur for this

trvial case, making it unnecessary io include. All seven caes a sunmmarized in Table (1).

For each case, the dynamical quantities we plotted versus time until the system reaches a

stable stac. Each quantity is then plotted for the first one hundied seconds to show detail.

CASE Ito w STABILITY 2L I.. MODEL COMMENTS

1 1.039 stab negative negative eoenti larg damping

2 0.907 stable negativ negative exponential ,edamping
in platform

inufiint damping
3 0.897 unstable positive positive exponential in platform

inufcet damping4 1.023 unstable positive positive exponential m wr
in platform

0.907 stable negative negative Vahulst as Case 2

.ame conditions
6 0.897 unstable positive positive Verhulst sam e 3

asCam e odtin
7 1.025 unstable positive positve Verhulst same condi4onsas Case 4

Table (1) Summary of Analyzed Cases

In Appendix A, -abi- (2) through (8) list the system parameters, core energy

parametr, and initial condituons. immediately following these tables are the graphs of the

important dynamical quantities. A typical geosynchronous dual-spin satellite was selected

for the numerical simulation. The platform and rotor masses and inertias are listed as part

of the initial conditions, and are the same for all cases. The inertia ratio is made greater

than or less than one by selecting L, the distance between the rotor and platform centers of

mass, to be 0.3 or 1.0 meter respectively. As a default set of values, all of the mass-
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qmng-dashpot syssems have m and me equal to 1.0 kg, k and k' equal to 1.0 Nim, and c

and c' equal to 1.0 kgsec. To establish the stable cases, additional energy dissipation is

required in the platforn. To achieve this, cases (1), (2), and (5) have m' increased to 20.0

kg and cl increased to 10.0 kgmsec. In all seven cases, the initial conditions are the same.

The platform rotates at a gesynchronous angular velocity, the rotor spins at the higher rate

of 1.5 rad/sec, and a perturbation is introduced by an initial transverse angular velocity of

0.1 rad/sec. The mass-spring-dashpot systems have no initial displacement or initial

velocity. The core energy parameters are also listed in the tables. The initial core energies

are determined by the system's initial conditions. The final core energies were taken from

the numerical simulation data. The exponential factors, r and P, were then determined

through an iterative process to best fit the modeled core energy to the actual core energy.

B. DISCUSSION

The individual cases can now be analyzed. The graphs of the dynamical quantities

are explored, and the data will affirm the revised stability theory.

1. Angular Momentum

For each case, the angular momentum is plotted versus time, Figures (5), (6),

(16), (17), (27), (28), (38), (39), (49), (50), (60), (61), (71), and (72). Because the dual-

spin system has no external forces, angular momentum must be conserved. For the stable

cases, there is excellent agreement, with angular momentum varying by less than one one-

hundredth of a percent over the length of the data run. This confirms the equations of

motion and validates the accuracy of the numerical integration routine. For the unstable

cases, the angular momentum percent difference increases to approximately four one-

hundredths of a percent. This is attributed to the increased dynamics of the system as it

establishes the spin about the transverse axis, introducing very small errors in the numerical
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a routine. The aon remain vey smalL and the equations of mod o and the

numical r ruine min a m.

2L Tol Energy, Platform and Rotor Core Energy

The graphs of energy are in Figures (7) through (10), (18) through (21), (29)

through (32), (40) through (43), (51) though (54), (62) through (65), and (73) through

(76). Several observations can be made.

The total energy curve reaches equilibrium before both the platform and the rotor

cam energae do. For Case 2 and 5, the total energy appears to reach a maximum and then

drop down to a final equilibrium value. Careful comparison of Figures (18) and (49),

shows the same system with the same initdal conditions, but with a slightly different curve.

It can be deduced that the energy is not steady, but is still oscillating. The sampling

frequency coincidentally saved values near the same magnitude of energy in the region

from about 3000 seconds to 10000 seconds.

The total energy for Cases (1), (3), (5), and (6) decrease& For Cases (2), (4),

and (7), representing both stable and unstable systems, it increased. This can be explained

easiest with the use of equations (26) and (27). For Cases (2), (4), and (7), the system is

settling out about the axis with the minimum moment of inertia. Because there are no

afoces, the angular momentum is constant. In the equation for angular momentum,

Equation (26), the inertia terms are squared. But in the equation for energy, Equation (27),

the inertia terms are not squared. Therefore, as the angular velocity transfers to the axis

with the minimum moment of inertia, Equations (26) and (27) show that the energy will

n . These equations apply to a simple dual-spin system. Equations (123) and (136)

for the Mingori dual-spin system would show the same result, provided the energy

absorbed by the mass-spring-dashpot system and the energy associated with the motor is

less than the energy increase associated with transferring the spin to the axis of minimum

"moment of inertia. This is the situation for Cases (2), (4), and (7).
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The total energy value will always be between that of the platform care energy

and the rotor core energy. The platform core energy will have smaller values as its

equation assumes that the rotor is rotating at the same rate as the platform, thereby not

accounting for the lame amount of kinetic energy associated with the rotor. The rotor core

energy will be higher than the total energy as it assumes that the slowly spinning platform

is rotating at the same rate as the rotor, providing the system with akditional kinetic energy.

The hundred-seconds graphs of total energy versus time shows curves with

several different behaviors. The time rate of change of total energy includes the energy

dissipation rate of the rotor and platform mass-spring-dashpot systems, and the rate of

work due to the motor torque maintaining the relative rotation rate. In the hundred-seconds

graphs, aside from the general slope of the curve, there is no apparent conrelation between

the specific behavior of the total energy to that of the core energies. Any relationship that

exists is masked by the motor and mass-spring-dashpot system's influences on total

energy.

3. Stability Criterion

The revised stability criterion of equation (97) states that the time rate of change of

the core energy over the respective nutation frequency must be less than or equal to zero.

The sign of the stability criterion for each case must be detmined. The time rate of change

of the core energy was determined by dividing the final less the initial value of the core

energy by the length of time of the case. The nutation frequencies were computed using

initial conditions. The sign of the stability criterion is listed in Tables (1) through (8). The

numerical value was not listed because the above assumptions used during the computation

give it no merit. Cases with inertia ratios very close to one were intentionally selected to

test the inertia ratio in this transition region. In all cases analyzed, the sign of the revised

stability criterion was consistent with the stability of the system.
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4. Postulated Core Energy and Nutatlon Angle

An explicit relationship for core energy as a function of time does not exist. If an

equation describing cone energy did exist, then by using Equations (101) and (106) the

nutation angle as a function of coae energy and time could be predicted for a dual-spin

system. This could then be extended to an actual dual-spin satellite. Given a sufficient

model of the satellite, the stability and the nutaion angle as a function of time could be

predicted. An objective of this thesis is to see if an equation for the core energy can be

developed that would adequately describe the nutation angle as a function of time for both

the stable and unstable conditions. The exponential model and the Verhulst logistic model

were explored.

a. Expotenial Core Energy Model

Observation of the core energy as a function of time for a stable system would

lead one to conclude that it behaves in an exponential manner. Equations (140) and (141)

are exponential representations of rotor and platform energy as a function of time. The

initial core energy was determined by the initial conditions of the dual-spin system. The

final core energy was determined by running the numerical simulation and calculating it at

the end of the simulation. If this was not available, a value could be estimated. Applying

the principle of conservation of angular momentum and noting that the system will

eventually spin about one of the primary axes, then the equations for angular momentum

and total energy can be used to solve for the angular velocity about that axis. Substituting

this into Equation (47) or (48), one would arrive at an estimated final core energy.

Although it would not be the actual final core energy, as motor torque contribution and the

mass-spring-dashpot system's energy dissipation was not accounted for, it would be

sufficiently close to satisfy the computational requirements. The exponential factor is

dependent upon the system parameters and initial conditions. For the cases presented,

different values were tried until good agreement was established with the core energy
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cuve. Addltional research would be rquired to demmine a suits exponential fiau, for

an actual satellite, taking into account the paramers and the initial conditions. Cases 1

trough 4 contain the numerical simulation data for the exponential model The actual and

postulated curves for care energy are contained in Figures (11) through (15), (22) through

(24), (33) through (37), and (44) through (48). For cases 1 and 2, both stable, there is

excellent agreement between the core energy and the postulated core energy. This in turn,

results in excellent agreement between the actual nutation angle and the modeled nutation

angle. The actual nutation angle is determined using the angular momentum quantities, as

shown. -luation (34). The time dependent variable required to compute the nutation

angle is the angular velocity about the spin axis. The modeled nutation angle is determined

in Equations (101) and (106), and is a function of only one time-dependent variable, core

energy. Herein lies the potential of the core energy theory. A sufficient model of core

energy over time, as in Cases I and 2, will provide an excellent prediction of nutanon

angle, without requiring any knowledge of the specific angular velocities of the system as a

function of time.

Cases 3 and 4 illustrate the exponential model for an unstable dual-spin

system. The exponential model for core energy, and its associated nutation angle, rapidly

approach their final values. The actual core energy and nutation angle, however, behave

quite differently. The initial conditions have the system near an unstable equilibrium. The

system moves from the unstable to the stable equilibrium slowly at first. It then increases

the rate at which it approaches stable equilibrium, passes through an inflection point, and

then approaches equilibrium asymptotically. It is clear that the exponential model

represents this behavior poorly. Verhulst's logistic equation was then addressed to

determine its adequacy in modeling the dual spin system.
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b Vcrluht Logistic CoM Energy MNdl

The rhust logistic equation was introduced in Chapter M. Figure (4) and

the associated desciptio explains the cacteritics of the equation The general shape of

the curves in Figure (4) is very sinlar to the stable and unstable cases of the dual-spin

system. Case 5 is the Verhulst model of the Case 2 stable system. Figures (55) through

(59) show that the Verhulst logistic equation can achieve excellent agreement with core

energy and nutation angle, just as the exponential model did.

Cases 6 and 7 are the same as Cases 3 and 4, except the Verhulst logistic

equation is used to model the core energies. Figures (66) through (70) and (77) through

(8 1) illustrate the modeled and actual core energies. Although the Verhulst model for rotor

core energy had excellent agreement, it performs poorly when modeling the unstable

system. The rotor core energy begins at an initial value and then decreases to an

equilibrium value. Referencing Figure (4), the Verhulst logistic equation will model the

rotor core energy exponentially.

To take advantage of the Verhulst logistic equation's curve beginning near the

the unstable equilibrium and its progression to the asymptotically stable equilibrium, the

core energy must increase over time. The platform core energy behaves in this manner as

the nutation angle goes from a small angle to ninety degrees. Figures (68) through (70)

and (79) through (81) show the Verhulst modeled and the actual platform core energies,

and the modeled and the actual nutation angles. The agreement between the actual and

modeled energies and nutation angles was very good. The general shape of curve was

consistent, with only a slight deviation in the center of the curve, and then a small deviation

as the nutation angle approaches the equilibrium value of ninety degrees. With this

agreement, it is established that a core energy model exists that can represent both stable

and unstable cases. For each of the cases, core energy is plotted versus nutation the angle,
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Figues (15), (26), (37), (48), (59), (70), and (81). The graphics package permitted only a

semi-log plot of rotor core energy. The plot did not provide any insight on relationships

for the dynamics of the dual-spin system. For both the stable and unstable cases, the log-

log plot between platform core energy and the nutation angle is linear from ninety degrees

until about two degrees. For nutation angles less than two degrees, the platform core

energy asymptotically approaches the equilibrium value. Case 5 and 6 is the same system

with the same initial conditions, with the exception of the increased damping system in the

platform for Case 5. The initial platform core energies and nutation angles are very nearly

the same for each case, as shown in Figures (57), (58), (59), (68), (69), and (70). One

can conclude by this observation and the definition of nutation angle as a function of core

energy, Equation (101), that there exists a continuous platform core energy versus nutation

angle curve. The appearance would look similar to the curve created by splicing Figures

(59) and (70) together. By varying one parameter, for example platform energy dissipation

rate, the system would progress along this curve and achieve equilibrium with a zero

degree nutation angle or achieve equilibrium with a ninety degree nutation angle. This is

what was done with cases 5 and 6. Adding as the third dimension to the curve the time rate

of change of core energy would then reveal the stability, the initial direction, and the rate at

which the system will arrive at the equilibrium condition.

C. FURTHER RESEARCH

The revised stability criterion for a dual-spin, quasi-rigid, axisymmetric system was

established. Numerical simulation was then used to verify the revised stability theory.

Further research could be conducted in several areas. The specific contributions to the total

energy could provide some insight. How much energy and in what manner does the motor

torque contribute to the total energy for both the stable and the unstable cases? Also, by

plotting the energy dissipation system's contributions over time, one could determine its
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effect on total energy, as well as comparing it to the core energy theory in Equation (97).

Relationships for core energy as a function of time were explonrd It was established

that the Verhulst logistic equation could be applied to a stable dual-spin system. By

changing its parameters, this equation also applied to the unstable dual-spin system with

very good agreement. Further research could be directed to find one equation that would

address both the stable and unstable cases of the dual-spin system without changing its

parameters. The equation for logistic growth with a threshold [Ref. 7] as applied to the

platform core energy shows promise in this regard.

EdI=.-r lEc 1- (146)

Given the Jaitial conditions, the platform core energy will typically start at some

intermediate vaiue and will either increase or decrease as the dual-spin system reaches

equilibrium with a nutation angle of either zero degrees or ninety degrees. Equation (146)

would be well suited to model the platform core energy. There exists a platform core

energy value, Ec w', where the system is at an unstable equilibrium. Equation (146)

shows that at exactly this value, the rate of change of the platform core energy will be zero.

For any value below the unstable equilibrium value, the core energy will approach the value

of zero. For Case 5, the final core energy for the stable condition was 0.122 J. Although

this final condition cannot be represented in Equation (146), it is sufficiently close that the

equation may still be used to represent the platform core energy. For any value above the

unstable equilibrium value, the core energy will approach the equilibrium value of Ec f.,r[

associated with the nutation angle at ninety degrees. Initial conditions would determine the

initial core energy. The final core ( Tgy can be estimated as described earlier in this

chapter. Finally, the exponential factor r' may then be determined based on the system

parameters and initial conditions.

Additional analysis can be performed on the revised stability criterion. The time rate
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of change of care enrgy over nutational frequency may be calculated and plotted versus

tim or versus other paramneters. The behavior of this stability criterion and the magnitude

of it for various conditions could provide some insight on postulating a relationship for

can energy as a function of time.
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VL CONCLUSION

The exiting y- stability criterion was iniroduced as

_+ : 0 (41)

It was shown that an inconsistency in the development disproves the existing

assumption that the motor energy input exactly balances shaft frictional losses. A revised

energy-sink stability criterion was then developed based on Hubert's definition of core

energy and was presented as

AE = = tD+L : 0 (97)

This criterion compliments the existing theory. Numerical simulation was required to

validate the theory. The Mingori dual-spin, quasi-rigid, axisymme-ic system was selected

for the numerical simulation. Several cases were analyzed to verify the revised energy-sink

stability criterion. By correctly postulating the platform or the rotor core energy, the

stability of the system could be determined. Specific knowledge of the energy dissipation

rates for both the platform and the rotor are no longer required.

An exponential model and the Verhulst logistic model for core energy, and their

relationship to the nutation angle, were explored. The exponential model had excellent

agreement with the stable cases, but was inadequate in representing the unstable cases. The

Verhulst logistic model established that an explicit relationship for core energy could be

developed. Nutation angle as a function of core energy for the dual-spin system could then

be predicted. The excellent agreement of the postulated core energy and nutation angle with

the actual core energy and nutation angle confirms the revised energy-sink stability

criteron. Additional resea ch is required to find an optimum equation for core energy as a

function of tm to represent both the stable and unstable cases.
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APPENDIX A NUMERICAL SIMULATION DATA

CASE 1: L > I, Stable, Exponential Model
it

System Parametems Initial Conditions

Platf m Rotor Platform Rotor

1'- l60kgM2  1iz- =OOkgn2  0.0 tm z - 0.0 mY° 0.0oI i - 0. or
13 - 1500 kgm 2  13- 1200 kgm 2  s S
1' = 1000.0 kg M- 700.0 kg &v3' 7.27 x 10s rads oh = 1.5

sc sec
m= 20.0 kg m= 1.0 kg O- O.lO.1• oft= 0.0om
a'= 1.0 m a= 1.0 m

k'= 1.0K k= 1.0m h Core Energy Parameters

c' io.o C= 1.0 kg Platform Rotor
sec sec

Ec i,,•'= 13.402 J Ec inkal= 3145.4 J

L= 0.3 m • ffi 1.039 Ecft"= 0.072 J Ecfgd = 3161.7 J
It tow negative LC _ neg tive

= -. 00134 s- 1  r = -. 00134 s-1

Table (2) Case I Parametrs
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Can 1: WID1>, Stable, Exponmtlal Model
1364 0.05

1363.8 0.04

1363.6 0.03

1363A 0.02

1363.2 0.01

S1363 0 4

1362.8 -0.01

1362.A -0.03

1362.2 -- bt-()&O .

1362 --- 1 -I I I I-0.05
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tim (Secoods)
Figue (5) Total Ene.gy and PNcent Difference Angular Momentum Versus Time

Case 1: Is/It>l, Stable, Exponential Model

1364 0.05

1363.8 - 0.04

1363.6 0.03

1363.4 0.02

1363.2 - 0.01

1363-0

1362.8 - - 0011

1362.6 [jtoal ] -0.021

1362A - 0.03

1362.2 r~0 -0.0

1362 I I I I I I I I -0.05
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Figure (6) Total Fnmy and Parce Differene Angular Momentum - First 100 Seconds
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Case 1: hI/lt,Stable, Exponential Model
1364 3170

1363.8

1363A 3160

13632 16

1363 31551
1362.8 .

1362. 3150

1362.4 - 3145

1362 L L 1 2 3140

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
til (S-mb)

Figure (7) Total Energy and Rotor Core Energy Versus Time

Case 1: Is/It>l, Stable, Exponential Model

1364 3149

1363.8 - 31485

1363.6
3148

1363 A

_,13632

1363 3147

1362.8 -.. .. 3146.
.* ', .. F .•: '- u 6

1362.4 w j J34.• :x j • t,."".• .,•i ,3146

1362.A - * I

3145.513622 -

1362 " 3145
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d =e ( O G e O d U )

Figure (8) Total Energy and Roa Core Energy First 100 Seconds
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SCa e 1: Iw Ift>' , Stable, Exponential M odel1364 14

1363.8
-12

1363A6

1363A - 10
1363.2 I

1362.4 -

"SI

1362.2 -i- c y
1362 -J''s--•r 0 ..

0 1000 20I 3000 4000 5000 6000 7000 W00 9000 10000

time (Suecds)

Figure (9) Total Energy and Platfom Core Energy Versus Tume

Case 1: Is/It>l, Stable, Exponential Model

1364 13.5

"1363.8 * 13.3

1363.A -13.1

1363.4 12.9

1363.2 12.7,

1363 - 12.5

1362.8 -... 12.3

1362A ___________~\~ 11.9

1362.2 -" 11.7

1362 11.5
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tim (seco)
Figure (10) Total Energy and Platform Care Energy - First 100 Seconds
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Case 1: h/It>l, Stable, Exponential Model
3162 .9

3160 - 8

3158 - -ner eemw• 7

3156 - modeled irotornawe ma- 65

3154 - 5

3152 -- 4

3150 3

3148 - modeled mmanio angle (rotr) -2

3146 - 1

3144 0
0 1000 2000 3000 4000 5000 6000 7000 8W00 9000 10000

tine (seconds)

Figure (11) Modeled and Actual Rotor Care Energy and Nutation Angle Versus Time

Case 1: Is/It>l, Stable, Exponential Model
3148 8..5

- nutation angleI8.

3147.5 .modeled n4tation ansle (rtor)

8.3

3147

8.2
[3146.5 A

8.1

3146
8U

3145.5 7.9

3145 -7.8

0 10 20 30 40 50 60 70 80 90 100

Figure (12) Modeled and Actual Rotor Core Enagy and Nutazion Angle- First 100 Seconds
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14 Can 1: I/ib>1, Stabl Expoeutlal Model

12 - pledoxm amw emurg

7
10 - moddled -fom. amei

D uaWion angle 1
,6 _______

4 • modeled aviaion angle (PlfcOrm)3
2

2 1

0 o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time (SmnCds)

Figure (13) Modeled and Actual Platform Care Energy and Nutadon Angle Versus TiMe

14 Case 1: Is/It>,Stable, Exponential Model 8.5
S~8.4

13.5 -
-ntto nl .

8.3
-modeled nution angle (platform) -8.23•

S13 -8.21

S 8.1

12.5 8

7.9.1

Platormcorecnca -7.8

modle r cn e , -7.7

7.6

7.5
0 10 20 30 40 50 60 70 80 90 100

tie (mennds)

Figtue (14) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Case 1: Is/It>l, Stable, Exponential Model
3162 1 00

3160

3153 [111 ] 10

3156

3154

3 1 5 0 0N.

3148 0.1

3146

3144 0.01
10 1 0.1 0.01

nuraiom angle (degree)

Figure (15) Care Enegy Versus Nutation Angle
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CASE 2: L <1 , Stable, Expometial Model

System Parameters Initial CMa& c as

Platform Rotor Platfrm Rotor

4'- 1600 kgm2  11m =1000kgm2  Z, 0.0 m z =0.0Om
Y' , 0.0M z = 0.0m

13I w 1500 kgm2 13 = 1200 kgm2

M' - 1000.0 kg M-= 700.0 kg )3'. 7.27 x 10- Ids = 1.5 O4
sec sec

m'= 20.0 kg m- 1.0 kg -= 0.10 Od oa2 = 0.01ad

a'- 1.0 m a- 1.0 m

k'= 1.0h km 1.0 X Core Energy Pammeters

" I= 10.0 A C= 1.0 A Platform Rotor
sec sec

Ec ikial' = 15.34 J Ec ini= 3147.3 J

L= 1.0 m L .i 0.907 Ecfrind' i 0.123 J Ecfaw = 3170.9 J

't~L~'- negative LCngtv

r' -. 00102s- I  r f -. 00102 s-I

Table (3) Case 2 Parameters
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Case 2: u/Iticl, Stable, Exponential Model 0

1367 0.05

1366.5 - 0.04

1366h - 0.03

1366.4 0.0

1366.2 -0.01J

1365.8 -

"1365 - -0.0 1
1365.2 -0.03

1365 -1-0.05
0 1000 2 400 M007 8000 900 10000

finl (Osans
Figure (16) Total Energy and Percent Diffrence Angular Momentum Versus Time

Case 2:Is/ItxI, Stable, Exponential Model

1366.5 0.05

1366.3 - 0.04

1365. - 0.02.

.%1365.7 - 0.01

1365.5 0
E

11365.3 01

1365.1 -0.02

1364.9 -003&

1364.7 E F 0 (tl- O)WO)

1364.5 -0.05
0 10 20 30 40 50 60 70 80 90 100

Figure (17) Total Energy and Percent Eifference Angula" Momentum - First 100 Seconds
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Case 2: IsiItzl, Stable, Exponential Model
1367 i •3175

1366.8 -

1366A 3170

1366A -3165131366.2 /

~1366 3160

1365. 
- 3155

136.5.6 o w

1 365A

1365.2 v con

1365 k 3145

0 1000 2000 3000 4000 S0 6000 7000 8000 9000 10000
im (Owmd&)

Figure (18) Total Energy and Rotor Core Energy Versus Time

Case 2: Is/t<l, Stable, Exponential Model
1366.5 3152

3150
-1.65.5

i • f '"3149

""-• "" -3148

.'. .;
• e i nmV

13643 [ 3147

1364 - 1 1 3146

0 10 20 30 40 50 60 70 s0 90 100
tin (800ond)

Figure (19) Total Energy and Rotor Core Energy - First 100 Seconds
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Can 2: IukilStabkl, Expoential Model
13167 •1

13668 14

1366.6
12

1366.

1365.6

1365.2 2

Is - 0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
,= (noon&)

Figur (20) Tota Energy and Paftorm Core Enrgy Versus Time

Case 2: Is/ltl, Stable, Exponential Model
13663. 16.8

1366 16.3

13653 15.8

13%65 15.3

1364.S - '. 14.8

.- Soa .mwgy [,.,.,.

1 -W4- 143

-~cm ==M
1363..5 t a "" 13.8

0 10 20 30 40 50 60 70 80 90 100
d=m (.MOM&)

Figure (21) Toal Energy and Platform Core Energy - First 100 Seconds
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3180 Case 2: Is/td<, Stable, Exponential Model 10

3175 9

3170

3165

3160 i
3155 - futatiof a~n&l 4

3150 -modeled nutation an&l (tuow) 3m

2

3145 1

3140 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time (saecnds)

Figure (22) Modeled and Actual Rotor Co E.nagy and Nutation Angle Vasus Time

3150 Case 2: IsIt'l, Stable, Exponertial Model 9.7
_ oco _ e_ _ _

3149.5
-model rotor core aer 9.6

3149

!Z-3148. 9-5i

3148 -- 9.4-2

3147.5
9.3m

3147 - nul ion . mi -9 .2

3146.5 -. modeled nutaion =ic (rotor)

3146 9.1

0 10 20 30 40 50 60 70 s0 90 100

tin. (m d)

Figure (23) ModeKed, Actual Rotor Core Fhagy and Numtion Angle - First 100 Seonds
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Case 2: IsItcl, Stable, Exponential Model
20 10

18 h-p~r-ar 9

-Platform core enegy
16 - 8

10 . mod noationangle(,doim) I ,

6 3

4 2

2 1

o 0
*0 1000 2000 3000 4AIM SW0o 6000 7000 M000 9000 10000

Figu=e (24) Modeled and Actual Platform Cam Energy and Nutation Angle Versus Time

Case 2: Is/t<l, Stable, Exponential Model
16 9.7

- noatio ange -9.6

Is - -9.41
14.5 9

Platorm OW mw -9.21
14 - m od le p latfo r m co wr eea r gy 9 .1

0 10 20 30 40 SO 60 70 S0 90 100
fi= (10=6Figive (25) Modeled, Actual Pladon Core Energy and Nuawion Angle- First 100 Secnds
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Cme 2: Is/ltl, Stable, Exponential Model3175 100

3170

3165 10

3160

335 -pAlfanD CMý

3150 I

3145 0.1
10 1 0.1 0.01

no= mir k (dqrvn)

Fig=r (26) Core Energy Verus Nutaiam Angle
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CASE3: <1 , tau Model

system Pameters Inti Conditions

Plafform Rotor Platform Rotor
z",,. 0.0m z - 0.0m

I,'= 1600kgm2  11 = 1000 kgm2  0.0 m - 0.0 m,

/3 -0 rSkgU2  13- 1200 kgm2  0 S

Mrm 1000.0 kg M m 700.0 kg o)3'" 7.27 x 10" Ud a4 = 1.5w

m'-- 1.0 kg m= 1.0 kg 1w, m 0.10ad at = 0.0Elol

dw 1.0 m an 1.0 m

r- m o1.1 km 1.0X CoreEneW ,,Porameters
m

LO A C. 1 Platform Rotor

Ecb"m= 15.1 J E£ ikw - 3061.6 J

L, 1.0 m L = 0.897 Ecju" - 1160.9 J 1 cfw, - 1489.9 J

"= -. 0005s- r -. 0005r4

Table (4) Case 3 Puameters
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1370 Ca 3: hU Wl, Unstable, Exponential Model 0.05

0.041360

0.03

1350 o. - 2

61340 0.01

0

r1330 -0.1

1320 -0.02

-0.03
1310

-0.04

1300 L-0.ow

0 100 200 3000 4000 5000 6000

Figure (27) Total e•ry mid Prcent Dffeen Angular Momentum Versus Time

Case 3:Is/It<l, Unstable, Exponential Model

1365.6 0.05

1365.5 0.04

- 0.03

1365.4 0

IMS-1 0.01J

1 364.9 o -0.03

UMV -- 0.04&

1364.8 ,-0.05

0 10 20 30 40 50 60 70 80 90 100
( (IcIu')

Figure (28) Total Enwegy and Percent Difference Angular Momentum - First 100 Seconds

83



Cm 3-. lM, Untable, Expeenatal Model

1360 3m00

-2600

61340 - 24W

I1330 - 2200
,, % -2000

132D - low Imd ery - 80

1310 J f.lo 160D

,,oL..I- I :7 = p

0 1000 2W(X 3000 4000 50m 6000

Figure (29) Tool Eneg and Rar Cmr Enegy Vmmus rm

Case 3:Isihtcl, Unstable, Exponential Model1366 3062

1365.8 - 3061.5

1365.6 
- 3061

1365.21365.2 - .,

1365 - - 3060 f

1364.8 -- 3059.51

1364A

13642 - i m o 3058.

1364 1- I 13058
0 10 20 30 40 50 60 70 80 90 100

sim (uomd)

Figure (30) Toad Enegy ad Rotor Core Enrgy - First 100 Seconds
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Cam 3: J•,tclo Unstable, Exponentia Model
1370 1200

1360 - low

13,50 -

r 1330__ _ _ _

130pltonsc m - 400

1320-

1310 200

"1300 0
0 1000 2000 3000 4000 5000 6000

Figure (31) Total E g and Padfom Care Eergy Versus Time

Case 3: /Jt'Al, Unstable, Exponential Model
1366 17

1365.8 -. ' 16.8

1365.6 - - 16.6

15.4 -3- 16.4

1365.2 I 62

. 1365 - . 16.

1364.8 - 15.8

1364.6 15.6

1364.4 -_ __- 15.4
1364.2 -,."/ *'form mma'S J 15.2

1364 t is II I1

0 10 20 30 40 50 60 70 80 90 100

F'g= (32) Totai nergyand Platform Care erg - First 100 Seconds
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--p- Cm 3: IW#IKI, Unstable Expoemptial Model10

3000 IAý90

2W Iutatolm n& -70

220 %rotor- Commy 40s

12000- - 20

1600 ------ 10

0 1000 2000 3000 4000 5000 60
daw (

Figure (33) Modele and Actual Rotor Care Einergy and Nutation Angle Versus Tune

3070 Case 3: Is/ltdl, Unstable, Exponential Model 2

3060 ~. - -2052

3050

303100 3 4 0 6 0 9 0

Fgr(30 )Mdld2cul0trCocEeg n oainAnl is 0 eod
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Case 3: Iuhcl, Unstable, Exponential Model
100

10 -atUU6tion egle - ~-90

- modeled nuation angle (platform) so

oo " . , 70

93 ,"60

1600

" - 40

400 - 2
- platform Core energy 2

200 
- modeled platform Cei cne - 10

0 1000 2000 3000 4000 5000 6000
thi (.eens

Figure (35) Modeled and Actual Platform Core Energy and Nutation Angle Versus Tune

Case 3: Is/lt<l, Unstable, Exponential Model80 25

70 - nutation agIle I '

- modeled nuttion angle (platforn) 20

60 -

30
i~40~~'~' -- - -~- ; f~ ,10

20 ~ ~ ~ ~ ~ ~ ~ d moee ltom oeeeg

10 - L 05

0 10 20 30 40 s0 60 70 s0 90 100

Figu= (36) Modeled, Actal Platform Core Energy and Nutation Angle- Firs 100 Seconds
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Can 3: Jhsb<l, UnstaWbe, Exponential Model
33OO 10OOO

30W

2800

25W - 1000

I2200

16007

1400 10
1 10 100

-utm -o (dogm)

Figure (37) Core Enrp Venus Nutation Angle
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CASE 4: L > 1 , Unstable, Exponential Model
It

System Paameters Intial Condtions

Platform Rotor Platform Rotor

11'- 1600kgm 2  '1 = 1000 kgm2  B 0.0 m z = 0.0 m
S- o.om im-o~o

13 = 1500 kgm 2  13 = 1200 kgm2

M" = 1000.0 kg M- 700.0 kg o"'= 7.27 x 10 rd o4= 1.5w

M'AI- 1.0 kg m= 1.0 kg *h 0.102d o.
a'- 1.0 m a= 1.0 m

k'= 1.0 Nm k= 1.0 h, Core Eneragy Puae

c= 1.0 11 c= 1.0 kg Plaform Rotor
sac $ec

Ec L9iaj'= 13.2 J Ec &"a = 3059.7 J

Lf 0.3 m I ffiiW 1.025 Ecfw" 1247.1 J Ecfp w 1552.5 J
It s'a = - pove

r,= -.0005s-1  r r -.M OS-'

Table (5) Case 4 Parameters
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130 Can 4: hIc'1, Ustable, Exponm tial Model1390 0.05

0.04
1385

-3 0.02

S1375 -0 V

-0.01'
1370 - od--0.02

1365 - -.031

1360 I I , -0.05
0 1000 2000 3000 4000 5000 6000

tm- ( __ _ __ds)

Figure (38) Total Energy and Pacrnt Diffence Angular Momentum Vrsus Time

Case 4: Is/lt>l,Unstable, Exponential Model1363.3 0.05

1363.7 [11111] 0.04

0.03
1363.60.02

1363-15 --- gt)-h(O))dgO)I 0.01
_ 1363.A 0

1363.3 - 0.01

-0.021
1363.2

-0.03

1363.1 -0.04

1363 • .0.05

0 10 20 30 40 50 60 70 80 90 100

im (uwowds)

Figure (39) Total Energy and Pecent Diffeece Angular Momentum - First 100 Seonds
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Case 4: IubI,Unstable, Exponential Model
1385 3200

1380 2800

2600
1375 -

attmml2100

1370 - f n e2200

2000

1365 1lo0

0 1000 2m00 3000 40W0 5000 60W0

Figure (40) Total Energy and Rotor Cre Energy V us Time

Case 4: Is/It>l, Unstable, Exponential Mode 3

1364 3060

1363.9

1363.8

1363.7
"3059

,.. 1363.6 [ Io cmr eer

i 1363.5 - 3058.5

1363A 
- 3058

1363.3

1363.2 3057.5

1363.1

1363 3057
0 10 20 30 40 50 60 70 80 90 100

tm m -onds)
Figure (41) Total nF r and Rotor Core Emgy - First 100 Seconds
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Cue 4:- lW>I, Unstable, Exponential Model

1380

S-6100

1360 pltmu

1000

1370 (seods0
0 1000 2000 3000 4000 5000 6000

Figure (42) Total Enary and Platform Core Energy Versus Time

1Case 4: Is/It>l, Unstable, Exponential Model

1363.8 - is

1363.6 - 14.8

1363.4 - 14.6

13632 A -jCN %Ir144Sw

1363 - 142

1362.8 - .WV - 14

1362.6 - 13.8

362. - 13.6

13622 I 13.4

1362 132
0 10 20 30 40 50 60 70 80 90 100

w- (seconds)

Figure (43) Total En and Plaform Core Eergy - Ft 100 Seconds
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Case 4:Is/At>l, Unstable, Exponential Model

3000 90

2W - -70

26 0-.- uodsld - ~ m angle ( m wo ) _ 6S2400

2000 -301
20

1600 10

1400 I0
0 1000 2000 3000 4000 5000 6000

time (Osconds)

Figure (44) Modeled and Actual Rotor Core Energy and Nutation Angle Vwsus Time

Case 4:Is/t>l, Unstable, Exponential Model30110 22

3060 20

3040 SI

-nutliton angle I 16

3020 - d.ed nutationgl (rotor)

14
3000 ___________

.,."' - 12

2910 - ,.."W . ... co e 10

2960 8
0 10 20 30 40 50 60 70 so 90 100

tin.. (seod)

Figure (45) Modeled, Actual Rotor Core Ebgy and Nation Angle - First 100 Seconds
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160Can 4: kAcA~, Unstable Expunental Modelo

14M -- "'0 a*&90

12W0--mdldn~nw&(~r)s
7"0

e low  60

Boo -so
600_ ____ 40.

/ ___ ____ 30~

200 - oddpafr o nry-10

0 1 - 10
0 1000 2000 3000 40W0 500 60

Figure (46) Modeled and Actua Platfrm Core Energy and Nutation Angle Venus Time

Case 4: WIst>l, Unstable, Exponential Model
s0 20

70 - nuuawzon angIc - is

60 -- modeled nulation angle (platform) -- 1

~:s- 14

r 40 1

20 X-10

t0 8
0 10 20 30 40 s0 60 70 s0 90 1Wo

Figure (47) Modeled, Actual Platform Care Energy and Nutatio Angle- Frt10Secods
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iiOW Cam 4: I >1, Unstable, Exponential Model10000 ,.10000

1000

too

1!0 100

Figwe (48) Core Enagy Vasus Nutation Angle
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CA-SE 5: 1 < , Stable, Verh"u Model
it7

Symm PIamem idal Com~tios

SRotor P a form R oto r

I 16M1 k m2 11 1000 i cgi2 z 0.0m z = 0.0m

13 1500kgm2  13 = 1200 kgmI2  $ 0
M' 1000.0 kg M = 700.0 kg 0"'= 7.27 x 10- U ts = 1.53

m'- 20.0 kg m- 1.0kg .kg Of.10 mf- O.Ozad
d= 1.0 m am 1.0 m

km. 1.01, km 1.011 Can EnergyParamezerm

10.0 AL C= 1.0 kg Platforr Rotor
sac sac

Ec ww - 15.341 J Ec b",, - 3147.3 J

L., 1.0 m /t 0.907 Ec~fd w 0. 122 J Ecf#, - 3170.9 J

SOW a-A rpt i ve

if- -. 0002s-"! r w -. 0002 s--

Tabe (6) Case 5 Paranee

96



1367 Cm 5: Is/htcl, Stable, Verhulst Model136" ------ 0.04
1366.8 0.04

1366.6 -- 0.0

1366A - 0.02

1366.2 -0.01

136S6

1365A -OM

1365.6 -0.0

1365.2 -0.05

0 1000 200 3000 4000 5000 6000 7000 )000 9000 10000
d= (manod)

Flgure (49) Total Engy and Pecent Diffem e Angular Momentum Vesus Time

Cam 5: UAtWl, Stable, Verbulst Model
1366.5 0.05

1366.3 - 0.04

"1366.1 0.03

1365.9 -00

1365.7 - 0.01

13653 A 
0 ;a1365.5 .0

1365.1- -. 021

1364.9 .0.031
1364.7 - low J - b(Ob(O, I -0.04

1364.5 1 1 -0.05
0 10 20 30 40 50 60 70 80 90 100

tdm (unmdh)

FiWe (50) Total Engy and Pcent Diffem e Angular Momentum - Frst 100 Secnds
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c1m 5:.. I. Rome, Vwul me" 317l
1367 3175

1366.6
136". 1.

1366A 
3165

136.26 2

1366 -3160

- 3155

136Z5A 
3150

1365 1 a I._j3145

0 1000 20m0 3000 4000 5000 6000 7000 M00 9000 10000
t~- (mons

Fqge (51) ToUd FwnU and RotorCore Enrg VasusTime

Case S:Js/It<l, Stable, Verhulst Model13663. 3152

3151
1366

3150

J~lllJ

j 3149

13 5OA I Il

%j3L.] 3147
1364.53

F owCMco] 3146
1364 - I I I 13145

0 10 20 30 40 50 60 70 60 90 100

dtm (mai-u)
F-gure (52) Total E~nergad Rotor Cre ~nergy - F'rst 100 Second
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Case 5: It/l, Stable, Verhulst Model
1367 16

1366.6 12

1366A 1- 1

1366.2 1 !

1366

1365.6

1365A

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
tme (secods)

Figure (53) Toad Energy and Platfrmn Core Energy Versus Time

Case 5: Is/hl, Stable, Verbulst Model1366.5 i16.8

1366 16.3

1365.5 15.8

15.3

1364.5 14.8

1064 - ir "",., 143

1363.5 I13.8
0 10 20 30 40 50 60 70 80 90 100

tim (seconds)

Figu (54) Tota Energy and Hatrm Core Enery - First 100 Seconds
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Cane 5: J/hl<, Stable, Verbui Model3175 . 10

9
3170-

3165- raemeey7S1. -- madedmm cor e menl o 6

3160 S

3150 - U&tm) : I
3150 made wia ion =SI gle

3145 0
0 1000 2000 3000 4000 5000 6000 7000 W00 9000 I0000

tim. (mean&)

Figure (55) Modeled and Actual Roka Coe Enegy and Numan Anigle Verus Time

Case 5: Is/tdl, Stable, Verhulst Model3150 __ _ _ _ _ __ _ _ _ _ _9.7

3149.5
9.6

3149 3149- 9.5!

-- 3148.5

i 3148 - 9.4

1 3147-5 9.3- 9 .3 2
3147 • nmkatiotagll

31465 - modeled nution ang (rowt)

3146 1 I I- I I- 9.1

0 10 20 30 40 50 60 70 80 90 100
time (mmoisd)

Figure (56) Modeled, Actual Rowr Core Energy and Nutation Angle - First 100 Seconds
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Case 5: I/it<I, Stable, Verhulst Model

20 10

168
16 100- p61fo0d m CO M GWV -8

14 - modeled pfol. aah (platfory 7 4

t6

4 2

2 a 1

0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

fim(sooods)

Figure (57) Modld and Actual Platform Core Energ and Nutaion Angle Versus Time

Case 5: Is/It<l, Stable, Verhulst Model

16 9.7

S15.5
1- modeled .a n angle 

,ilorm)15 - 1 9.4

9.2

14
9.1

13.5 1L - I- -I II- II11 9

0 10 20 30 40 50 60 70 80 90 100

Figure (58) Modeled, Actual Platftrm Care Energy and Nutation Angle- First 100 Seconds
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I, --- V .,:,1..ý -> .1- ",.1

3175 Can 5: Wk/hl, Stable, Verbuist Model I

3170
rotor c5m ore e0mr
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13160

3155 --- p1ton core - 1
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3150
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Figure (59) Core Energy Verus Nutalion Angle
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CASE 6: <L1 , Unstable, Verhulst Model
it

System Pumetr Initial Conditiom

Platform Rotor Platform Rotor

1'u 1600kgm 2  !11 1000kgm 2  0.0m z = 0.0m

0o.o0 M = o.o m
13 a 1500 kgm2  13= 1200 kgm2  S S

A• = 1000.0 kg M= 700.0 kg w3'= 7.27 x 10s o = 1.5

n,'- 1.0 kg m= 1.0 kg .10- a.d0 r, 0.0 ad
a'- 1.0 m am 1.0 m

k .0 h*oN km 1.0 X Core Energ Parametersm
g = 1.0AC== p1. kglaorm Rotor

L- 1.0 m L~ai= 0.897 Ecfbma - 1161.01J Ecpvugi - 1489.91J
________ how_____ 

-c positve -c Positive

-1 -x10 4 S-1  r -1x 10-6s-I

Table (7) Case 6 Paratners
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1370 CaCm 6: IMstII, Unstable, Verhuist Model1370 0 .05

0.04
1360 

0.03

1310 -00

0.01
s1350 - orn I'O))(O

1330 0O.O

1320 - 4OOO -0.026

1310-03

-03w

-0.04
1300 J -0.405

0 1000 2000 3000 4000 50WO 6000

Figure (60) Total Eieg and Pacent Diffrence Angular Monmentum Versus Time

Case 6: Is/It<l, Unstable, Verhulst Model

1365.6 0.05

1365-5 - - 0.04

0.03

13652 0 E
1365.

-0.03
13. -0.04

1364.81 I I I I I0.05

0 10 20 30 40 50 60 70 80 90 100
It- (raros

Figure (61) Total Energy and Pearcent Difference Angular Momentum - First 100 Seconds
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Cane 6: Ih/tclUnstble, Verbulst Model1370 • 320

1360 - 3000

- 2300
1350

- 2600

1340 - 2400

1330 - 2200

1320 I- " - " I .2 0

1310 - - m elaY 1600

1300 1 J1400
0 1000 2000 3000 4000 500o 600o

Figure (62) Tota Ewgy and Row Cc En mg Ves Time

Case 6:IsIt,• Unstable, Verbulst Model

1366 3062

1365.8 3061.5

1365.6 301_

3060.513652

B6 - .3060.

13642 -w - 30 59 .5
1364.6 - 3059

1364A

1364.2 -- icmO -3058.5

1364 J 3058
0 10 20 30 40 50 60 70 80 90 100

Figure (63) Total Enr and Rotor Core Energ - First 100 Seconds
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Ca7e 6: hIs/c, Unsable, Verhui Model

1360 - 1000

1350 -

1340 -

132M -l~onci 400~1320 -

1310 - 200

1300 L- 0
0 1000 2000 3000 4000 5000 6000

tim ("Can&)

Figure (64) Total Enez and Platform CAoe E gy Vwus Tine

Case 6: Islt<I, Unstable, Verbulst Model1366 17

1365.8 - 16.8

1365A - 16.4

1365 - 16.4

13652 - 16•. 16.2- ' - 16.

1364.8 1.

1364.6 t• Uf V 15.6

1364I 15.4

13"Lmfiomg 152

0 10 20 30 40 50 60 70 80 90 100

Figpe (65) Total Em y and Plafrm Co Em y - First 100 Seconds
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Case 6: Illt<l, Unstabl., Verbuist Model

3000 90

22O soXO 600O

nmods)WWat an& bo) 60

12200 
5 -0 mw so

2000 
-o 

=mamaI-40

- 301

o00 - 20

1600 -10

1600 1 1 0 I II1

0 1000 2000 3000 4000 5000 6000

fi (Swam&s)

Figure (66) Modeled and Actual Rotor Care Energy and Numtion Angle VeFrst Time

Case 6:Is/It<l, Unstable, Verbuist Model
3100 s0

3050 2* to"c OA 45

3000 _ 40~f

2950 -- uWv ocma 35

~2900 -3

2850
251

p2800 -
*uin n 2082750 j

2700 - IDodhIed mlhftmabngle8 (mwo) i5

2650~'10

0 10 20 30 40 s0 60 70 S0 90 100
dm -90O

Figuire (67) Modeled, Actual Rotor Core Energy and Nutatio Angle - First 100 Secods
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- -½Or -.

Cas 6:. Jshc1, Unstable Verbuist Model
90

1200 - Rotation angle so

60
Q W

5"0

600 -4

-20
200 -Mdldpaii oecnry -1

0 11 -- 0
0 1000 2000) 3000 4000 500 6000

tim (useconds)

Figure (68) Modeled and Actua Phdatrm Care Energy and Nutation Angle Versus Time

Case 6: Is/it<1, Unstable, Verbuist Model
Is 10.1

17.5 - mutation angle I1
-- modeled uWatioga angle (platforml)9.

17

_ ~9.81

16.59 
.

16 9.61

155 9.4

0 10 20 30 40 s0 60 70 so 90 100
tims (acns

Figur (69) Modeled, Actuial Platform Core Energ and Nutaion Angle- First 10 Seconds
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Cane 6: JaIs I, Unstablev Vefbuist Model lw

32000

21000 
bomCi M

2600

1400
10 

100

Figur (70) Cm Energ Versu Nlutaon Angie
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CAME 7: 'L> 1 , Umutble, Veriti ModdI,

sy"M Pwamcmw Init Codi

Platform Rotor Platform Rotor

1in1 Jkgm2 11 1000 kg. 2  Zo = 0.0m z = 0.0mI•y w 0.00 Mm Ii = 0.00 M•,- o.om ,z - o.o m
V- l0 ISMkg 13 - 1200 kg 2 1

S= 1000.0 kg M - 700.0 kg w ""- 7.27 x I10-5 M I a = 1.5
wc sec

'. 1.0o k, M. 1.0kg 0. . 3 o.f_ oi.ooo
dm M 1.0 m an 1.0 m$c wc

kM 1.0 X k= 1.0 M CamEngyPParametes

~- ~ 1A~~~ latormRotore= uo-[ C= 1.O A

Ec h - 13.2 J Ec 6 - 3059.7 J

L= 0.3 m 1.025 Emjb" - 1247.1J E£j,, - 1552.5 J

&u = posit, t = positive

= -I.IxlsI r a -1. x 104 s-1

Table (8) Case 7 Paramens
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Can 7: /ct:>l, Uustable, Verbulst Model
1390 0.05

0.04

1385 0.0

1080
0.011I1375 0 :6
-0.311

1365 ~0 ).0.03

1360 -0.
0 1000 2000 3000 4000 5OOO 6000

Figure (71) Total Energy md Pa.ecM Diffaen Angular Momentum Versus rune

Case 7:Is/It>l, Unstable, Verhulst Model
1363.9 0.05

1363.8-i 0.04

1363.7 0.03

0.02

61363. 0

13633 1 -0.01

13632-0.03

1363.1 - -. 0.04

1363 I-L .-0.05
0 10 20 30 40 50 60 70 80 90 100

Figure (72) Total Eergy and Pmcemt Diffmee Angular Momentum -Fist 100o
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. .... .......

Ai

Can 7: Un121, Uns able, Verbuit Medel
1385 .,3200

1370 - 2-"l

bo_ 
2600

1375

11370 -20
-2000

1365 - 1ow

1360 1400
0 1000 2000 3000 4000 50OO 6000

Fi•umr (73) Total EnmW and Rtr Com E Vmus Time

Cane 7: lIst>l, Unstable, Verbuis Model

1363.4 
3060s1363.9

1363.71 -. 3059

1363.5 - - 3058.5

1363.4

1363.3 - - 3058

1363.2

1363.1

1363 3057
0 10 20 30 40 50 60 70 s0 90 100

Figpme (74) Toal Ew and Rotr Coz Enmg - Firs 100 Secnds
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Case 7: Lwlt>I, Unstable, Verblist Model
1385 -- 1400

1200

1380 -

4000

i1370 - -600

1365 L- 0

0 1000 2000 3000 4000 5000 6000

Figue (75) ToW] Energy and Platform Cam Energy Versus Time

Case 7: Is/h>l, Unstable, Verhulst Model

1364 15.2

1363.8 - 15

1363.6 - - 14.8
;~..

1363.4 - - 14.6

0-1363.2 14.4 S

1363 -. " 14.2w

1362.8 - 14 -

1362.6 --- 13.8

1 362A -. -_________ 13.6

1362.2 "3

1362 13.2
0 10 20 30 40 50 60 70 80 90 100

Figur (76) Toa mE ng and a m e Emn -First 100 Secods
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Cam 7: Is/I>l, Unstable, Veruilst Model

3200 100

3000 90

26W - . n an&(row) - 750

1600 O0

140II I I I0

0 1000 2000 3000 4000 5000 6000

low (- 20

F'gure (77) Modeled and Actual Rotor Care Energy and Nutation Angle Versus Time

Case 7: Is/It>l, Unstable, Verhulst Model
3100 50

- rawcoteenew45
3000 - toior eaew

- modeled otor coe40

2900 35

25

2700 20j

-DISioO angle

26 modeled nulalic angle (mloww)

Id 0 10

0 10 20 30 40 50 60 70 80 90 100
tiw (wounds)

Figure (78) Modeled, Actual Rotor Core Energy and Nutation Angle - First 100 Seconds
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Can 7: Iu/1C1, Uuistable, Verhuist Model

1100

70~

s 1000 -60

I600 -4
______ ____w 303

400 -- paimO 0"2

200 -- modeled pktfacm coan awa 1

0 1--I I 10
0 1000 2000 3000 4000 500 6000

FiW= (79) Modeled and Actual Pl~atrm Cmr Energ and Nutaton Angle Versu Tune

Case 7: Is/lt>l, Unstable, Verhuist Model
16 9

- nuaion ngle8.9
15.5 -mdldnttoanl pafr)8.8

15 8.7

S 8.6

14-5 8.5S

14 
8.4j

14 8.31

13.58.
- moew ptfor conOWV8.1

13 8
o 10 20 30 40 50 60 70 s0 90 100

fim (SOO
Figur (80) Modeled Actua Platform Cm Energ and Nutaio Anigle- First 100 Secods
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3M ~Can 7: Wb1,>I Usgaba., Verbuls ModW OD

-00 lownam iNNW

S2400

lo- - - 'Ui a m

1400 10
1 10 100

Figure (81) Core EMU~g Vansm Nutation Angle
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APPENDIX B COMPUTER PROGRAM CODE

/ ......,~t~.ss**declarations ~.

*iaclude .ath. h'>
*include <malloc.h),
#include <stdio.h>

Odefine HAXSTP 1500Z3 'lin
*define TINY 1.0*-4A. P' fl(IriII

#define ?GROW -0.20 /1 kroqc/
#define P51131K -0.25 /* krqc1
#define FOOR 0.056664666666666666666666666666667 /* 1.0/15.0 krqcl/
#define SMEZTY 0.9 /P krqc 11

#define EURCON 6.0*-4 /4 krqc '/

C idat **Y.O, *xx-O: /* defining declaration rkdumb I/

int kmax-0, kount-0: /* defining decliration odeint I/
float *xp-0, "*yp-, dxsav-0; I' defining declaration odeint1

I *~~~** *t erot function ~ * ***

void nrerror(orror-text)
char trzortext 2:

void exito;)

fprintf(stderr."-Jw!r*:ical Recipes run-time error. ...\n"):
fprintf (stderr, "1s\n',error text);
fprintf(stderr."...now exiting to system. ...\n");
exit (1);

/ t***********~~ ~vector function ~*
float *vectorr(nl,nh;
int ni, nh;

float tv:

v - (float *)ma!!oci(unsigned) (nh-nl.1)*sizbof(floatl))
if ('v) nzerzorvlall~cation failure in vectorow);
return v-ni:

~~~ ~~matrix function *O*** **B4h4*"

float **matrix (t:=*. , nci, nch)
mnt nrl, nrh, ncl, n2:h

int i:
f loat **n:

m- ifloat **) rma~lez:unsigned) (nrh-nrl+l)*sizeof(float,)):
if O!m) nrerrort"allccation failure I in matrix()");
m -- nrl;
for (i-nrl;i<-nr-:i.-)

mli) - (float *) malloc((unsigned) (nch-ncl~l)*sizeof~nn1't));
ifl (Imti*, r.rerror(alloc~tion failure 2 in matrixo"):

mi -nc.,:

return m:

/ * *~~~~~ free vector function *.**.***C/

void f roeevector (v. ni. nh)
float 'v:
int. ni, nh;
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fzee((char'e) (V*nll):

Sfree matrix function .....
Void free matixia(m, nzl.nxh,ncl~nchI
float - -W.
Lat axle nth, acc. nob:

int. i'.

fte*((char*)(m rl:

/***e~***e~***e*e*rk4 function " " "''9

vofd rk4(y~dydx~n.x.h~yout~derivs)

float y(1. dydx(I, x. he youiatl:
void (*derivs) (3:
lot n:

float xh. bh. h6, *dyia. *dyn, *dyt, 'yt, 'vectorz(J:
void free vector I;

dym - vectorr 1, n):
dyn - vtectrr~l~n);
dyt - v~etorr(l,n);
yt - voctorr(1,n):
hh - h*O.5:

h6- h/6.0:

for (i-l;i(c-n:i++) yt(iJ - y(ii~hh'dydxlii: 1' first step *i
('derive) (xh~yt.Gyt,dydx).
for (i-l:i-c-n:ie.) yttil - y(iI~hh'dyt(iI.
('deriva) (xh, yt, dyrr, dyt);
for t-;~ni4

ytli) -y(i14)h'dyM(i);
dynli) dytdiJ+dymhi):

('derivs) (X~h~yt.dyt.dym):
for (i-1:i-c-n;i..) youttil - ytii~h6'(dydx(il~dyt(i342.0'dynjill):
f tee vector (yt, 1, n) :
free vector (dyt * 1, n:
ftte vector (dym. 1 *)
free vector (dyn,. ln);

~~~~ ~~rkdumb function ***...t...#.i

void rkdumb (vetart, War&, xl. x2,nstep,derivs)
int. nvar,nmtep:
float vstarti).xl,x2;
void I'derive) 0l:

int. i, k:
float x, h;
float 'v, *vout, 'dv, 'voctorro:
void rk4(), nrerroro), free vectoro:

v - vectorr(l,nvari-
vout - voctort(l,nvar):
dv - voctorr(l~nvar):



v(1) - vstart (i):
YMii ii - vii):

xxiii - Xl:
x - Xl:
h - (x2-xl)/nst9P:
tot (k-i: k<-wsttp:k**)

(*dorivs) (x.Y~dv):
xk4 (v.dv,nvar~x,h~vout~detivs):
if (x~h X) nregror (Step size too small in routine PKI'II':1"l:
x +- h:

for ti-l~i<-nvar~i*4)

v~ii - vout Iij:
y(i)(k+ll - v~ii:

free vector (dv, 1, vor):
free vector (vout, l'ovar).
free -vector (v, l~nvat):

/ O~iOOO**t*******rkqc function
void rkqc (y,dydx.a, x. htry.epseyscal~hdid, hnext~derivs)

float yii, dydxli. *x, htry. epa, yacalti. 'tidid, *hnext:
void (oderivs)U);
mnt n;

int 1:
float xsav, hh, h, temp, errmax:
float *dysav, *ysav, eytemp. *vact~ocr();
void rk4(), ncerror (I, free vectoro(;

dysav - vectorr(l,n):
ysav - vgctorr(l,n):
ytemp - voctorr(l,n);
xsav - (ax).

for(ilini*

ysaviii y~iij
dysavii) -dydxili);

h - htry;
for :

hh -0.5*h:
rk4 (ysav.dysav. ,nxsav, hh, ytemp, derivs):
*x- xsav~hh.

(*derivs (*x, ytenp, dydx);
rk4 (ytemp,dydx, a, x,hh,y,derivs);
*x- xsav~h:

if (*x -- xsav) nrorror("Step size too small in routine RQV");
:k4 (ysav, dysav,a, xsav, h.ytemp, deriva):
erroax - 0.0:
for ilini)

ytemviii - y~ii-ytempti):
temp - fabs (ytemp~ii/yscaliii);:
if (errmax < temp) errmax - tamp:
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I

efzas I- j 4-Ypa.)FCR

fif~vco (yxav, 1. n) 0

void(*hkdid -

hneni -sp ierms; ao

voidnrezoz),break:eto~j

y ha - SocofrlT~ex(VMRIalqrrrax

free vectorr(ltesvar.):
free vectort(dys var.11):
fre veto X1.v . )

flort yatarti<-nari.* x?. -pa hi. hmli
fox ar *ntplnok, nbAXSPn: p+

vd(deri ivs)j 0: yx)

float~i Mount <. hnemaxdid1h

yacal(+kont - x;tr(1,a)
fo (-Ii-vri+ vectorr(1nt)-a1l:

dyds- v ctr(y.dnvar): ~ hPYCIShihnx~erV
if -C hdi) -- fab%) -f*ok:e lse +hi):dl
ifk - I-2)*b2ax) > o~t- 0:0

~~~~for !i:-vr i-i) yiI -nyartfi++

('deny:)~i -x yydydx)
if Mkma a )

if (+kount <kmx-i

for (ili-vri+.i) c-vsri.4kun) -pllloun)-ji)
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free vector (dydz1 1.nvsr):
free vector yly.1.nvar):
free vector (yacal,1, nvar J:
return:

It (febs(hnext) <- hami) nrzerrr("Step size too small1 iti OI)IiIr");
h - hnext:

nrexzor("Too mny steps in routine OOEINT"):
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*deltae HAMMYRA 100000
*iefi.. 501'. 1106M)(

lot kovat, kmax:
float **yp. 'up:
float dxavsw dxmin. dxlS~iRt:
float 11-0.0. 12-0.0, 13-0.0, M4-0.0, mo-0.0, mb-0.0, a-0.0, k-0.11, c-nOA:
float ZIPO.0,12Pm0.,13pin0.0,mgpaO..,q-..O.,mbp..O..ap-o.O, kp-0."ý.v-i 11.1):
float L-0.0. 81MG-0.0, HT-0.0. V-0.0, xho-0.0, chop-0.O, WI-0.0, 1.7-0l.11!
float A-.0.0. C-0.0 J3pmO .0, wip-C .0;

/e*oe~e~eoeee.**~ WGATIOMS OFNTON ..........~"*
void doziv (N. y.dydx3
float x. Y0,. dydufll

float Seta-OC0, dyduaeta-0.o:
float Al-O.0, A2-0.0, A3-0-0, A4-0.0, A5-0.0, A6-0.0, A7-0.0, AA-fl.fl
fleet AIP-0.0, A1O-0.0, A11-0.0, A12-0.0, A13-0.0, A14-0.0, A15i-0.0, AIA-f.I':
float A17-0.0, A1O-0.0, A19-0.0, A20-0.0, A21-0.0, A22-0.0, A23-0.0, AM4-nin:
float A2S-0.0. A26-0.0, A21-0.0. A28-0.0:

float 51-0.0. 82-0.0, 33-0.0, 34-0.0, 35-0.0, 86-0.0, 87-0.0, P9--0.0:
float 59-0.0, 310-0.0. 511-0.0, 312-0.0, 813-0.0, 814-0.0, 015-0.0, P116-0.0:
fleet 317-0.0. D18-0.0, 319-0.0, 320-0.0, 821-0.0, 322-0.0, 023-n.0, ' 00
float 325-0.0, 526-0.0;

float Cl-0.0, C2-0.0, C3-0.0, C4-0.0, C5-0.0, C6-0.0, C7-O.n. CRq0.1l:
fleet C9-0.0, C1O-0.0. C11-0.0:

float 01-0.0. 02-0.0. 03-0.01 04-0.0, DS-0.0. D6-0.0. 01-0.0. , '.

fleet 91-0.0, Z2-0.0, 13-0.0, Z4-0.0, E5.0.0, E6-0.0, E7-0.0, ~*)
fleet ILS-0.0, 110-0.0:

float 21-0.0, Z2-0.0, %3-0.0, %4-0.0, FI-0OC, F2-0.0:

dydu(4) - y(S3:

dydx(61 -y7)

2eta - rho-y(43.erhop-y16j: dydxzeta - Vho'y(514thc~p',;71;

Al ft-(A-C)*yIZ1*y[3J A2 - j3p'3igmaly[2J;
A3 - 2*KTaeta*dydxzetaeyllj: A4 - MT*SQ(z~ta):
AS - MT*S0(zeto )*Y(2IeY[31: A6 - -2*m*(zet&4L2)lyf4]:
A7 - 2*m'(Xeta.L62)*yI4Jey(210y(3J; Al - -2*m(zeta+L2)*yi~pA1J):
Ag - -2*m*y(4)*dydxteta~yl1j; Al0 - 2*m'y(4 j'y151'y(1I:
All - m'SQ(y14J): A12 - -m*SO(yI4j)*yI2J'yj3j:
AD3 - -may(41*&: A4--~1J&y1~jjA15 - -2 ,mp(xeta-L1)*y(6); A16 - -*m'y(41'a-ylI'y12~j1; )yjj
A17 - -2*xP'(:et&-Ilj*y7171y(l); All - -2*'p'yI6j'dydxzp~tai~yjj:
All - ?*o*'yI6I'Y(7)*y~ll: A20 - mp*So(yl633;
A21 - -mP*SQ(ysj4)'y12J~y(3J; A22 - -iW'yI6J*ap'cox(sigr.,,mI:
AL23 - -"*yI6I'ap *cs(sigMao'.)*Y(1 'ull): K24 -up~c~:)
A25 - N~P*'OLf(SlgmSN)*y(6)ISQ0(yI3j~sig~ma)..S(y(2J):)
A26 - A+A4*h$AleA11.£1SA2o: A27 - A13+A22;
A28 - Al*A2*A34£*AS+7.M.£g.£Al0,l2,£14,£1s,£1,,£ll*£lg

4A2lA,3 4 75

Il1 - -C-A)*yI11'yj3). 32 - -J3p~sigma~yt1);
53 - 2*K0Taeta'dyd'.get&'yj2j: 54 - NP*SQ(zeLa3:
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HT *HSQ(zetse*yM*1Y(13: 56 a -2*m*(&et&L2P*yI4~;
3S7 0- -2w*m(xet*+L21*V14j3yt1P~y13J as o -2*m(zet.4J-?PyI5!y171:1
539 -2*omy141'dydxzotaeyl2j: 310 -21m*YI4I'yISJyI7I.
all1 M"SotYMG); 312 - m*SQjyI41) *'1)ytlPI*:
513 -P-* : 514 - ~~IJS~II~O~l)
513 - -2'u'(:eta-Ll1)yIEJ; 516 - -2iupt(:.ta-L33'yI'7vI1Yllyl:
1117 - -2'up*(:.t&-LI11y(7l'y121: B1g - 2*np*Y616Py12P I yl 7 -yI I)
532 - mp'SQ(yIEJ): 320 - .p'5Q(yg6eIy1iPyV-
B21 so-M*p'ecoeslsgma'x): 323 - -mp~sp'sin(siqmfi1) )~j
522 *-uppap'cos(uiqM'xJ *(SO (y(3I41 +A) I-SQ(y II)II33'y(61
3B24 p* ipap'ulntsigms'x)'Y16)'Y11J'y121: 325 - A+0l44R6 :-113I)I', 114

326 s1,I2,I3.I5+e37,56S,9,IO4312+314,516,317+513+820+322+D24:

Cl -- 2'm's~yISI'y(1I: C2 - -m'.'y143;
C3 - a'ay14I'Y(2P*y(3j: C4 - -2*up*ap*sin(sigmao::Pyl~ilv~l~l
C5- *-vp'ap's~nIsigma'a)*y161: C4 - -.p~ap~sin(aiqma~x~lyi~lPyiI'y! I:
C? -2*=p'ap'co9sis s'a)*yj7I*yj2): C8 - -or'ap~cos (sigma *x)*1 6 1;
C9 *mp'ap'coa(slgm'x)'y(1*3yI2I*Y(3):

CIO C2+CU: CII C1+C3+C4+C6+C74C9;

DI m*11-:ho); D2 - -imprho:
D3 -m'a: D4 - m'a'y(jI'y(3J:
D5 - Nl'(SO(Y(2l).SQ(Y(21))'(y(41'(1-th@)-L2-rhop~yfEI3: -f

D7 wk'Y(41; DO - D4+05+D6.07;

E1 -iflrhop; E2 - op' (1-rhop):
E3 -mp'ap'ain(siqm&*x); E4 - .m4p'a*sin (sigma Ix) *y 12) (y :3) 2i on
E3 -mp'ap~cos(uigmafx3: 96 - b'p'apcos(sigIma~x)yI1)(y!3I42.fi~nr:i).
£7 -- mp'(SO(y(1J)4SQ(y[2J3)'(y(6)'(1-rhop)*L1-rho'y14)): FP-r0 :
£9 -kp'y16); ElO - £4.E6+E7eEB+E9;

Z1 (-(A27'B313/(A26'3231-21/E3)/((A27'5251/(A26'323[.ES/E31;
22 (-(A275821)/(&24'3523).A24/A26-z2/E3)/E(A27'325)/(A260823)41:5i1'3);
TIr - (-(A27'526)/(A2453233*A28/A26-EIO/E3)/((A27'325)/(A26'R23)4E-5/E3):
23 - I (C'513)I (CIO'323) -(A27'313) /(A26'323) I/

((&27'3251 /(AZ6'R123 -(C'S251 /(CIO* 231 (SC I10i
Z4 - ((C'5213/(C1O'323)-(A27'3213/(A26'3231.A24/A263/

M(27*825) / A26IS23) -(C*925) I(CIO *123) 4 C!IC]O):
F2 - ((C'B26)/(C1O'323)-C1I/ClO-(A27'326)I(A26'B23).A261A263/

((A27'525) / A26*B23) -cC&253 /(C10IO *3) IC,1CS/LO)

dydx[515 - (t-F2-081D3)/(Z4e+D2/03).cr1.oa/o3)/cz2.02/D3, 3/

dydx17) - f(-F2-DU/03)/(Z3.D1/D3).(F1.OS/D3)/(Z1*Dl/D33 )/
((-Z2-D2ID33/(21+DI/D3)+(z4'D2ID3I/(-34f~ý'lht)).

dydx(31 - (dydx(SI'*(CS*313)/(C*325)+
dydx 17' ( (CIO'A243/ (C*A26) .(C5'321)/(CC'325fl*
(C1O*A2U) / ,CA263 .(CS'526 / (Cs253 -Cufc) /
(1-(CIO'A273/(C*A26)-(C5'323)/(C'325)3:

dydxtlI - dydxl3I'j-A27/A26)4dydxt7)*(-A24/A26).(-A28/A26):

dydx[21 - dydxI3I'(-323/325)*dydx(5I'(-Si3/B25)+dydx17J*(-B21/D25i-P26/1;'5:

~ MAIN PROGRAM ........... 4/
main()

int L, J, nbad, nok:
int 11-1000, 12-2000, 13-3000, 14-4000, 15-5000, 16-6000, 17-7Gnn:
int 18-8000, 19-9000, 110-10000:
i foat ops. hi, hami, dxsavd, iii, x2, xscale. lystart:
flost Hl-0.0, H2-0.0. H3-0.0. filp-0.0. 112p-O.O. H3p-0.O, zcm-0.O. i.~~
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Cleat 71-.0 0.T2-0.0. T3-0.0. T4-0.0, 75-0.0. T6-0.0. 11-0.'), T"'.0;
float 7".6, 0 10-0.0, 71m.0.0 T12=0.0. T13-0.0:
float sesgivid. it. Itp. Ittetal. to, lop, Istotal. wn, 1winbd-%. .iII:
fleet *he. 'hedel. **total* Sototaldel. 'h, thdoi. *theta;
float *CC, *90led. Mop,* 'Ucpdel, 19chypo. aEchypedol. *Ecphyp., *r.Itvrw..I..I:
gloat 0. op. *eta. **tap. tomi. ecfactor, ecpfactor, haq. Ectinil, . I-.iti,.l:
float aIgeec. *igae*CP. sigoq. SIgnqp. erg, &rgp, Ecf, Ectp.
gloat *lcOxP, *UPexP. *ECexpdel. *ZCpeacpdal. Oetahs, *ntahp:

yatart - .ectorr(l,m); Ec - vectorr (I.. :1AAI'AY):
ke - 'Oct~zZ(1.NAXARPAY): tcpd.1 - vectorri1.M-AY.AIRAY):
keda). - 'OCtet: (1.KAXAIMY): Echype - vector: (),* IIA::ARIPAY
*total - VOCtO~z(1.KAXARRAY): Echypedtl - vectort(I'tAXAPPAYI:
etotaldel - vectoxr(lMAXAMAT); Lecphype - voCtorri.~.AIA)

h - veCte~xI1.NAXAMRY): Zephypedel - vectorr 11. 11;I-ARAY):
theta - Vectoru(1.NAXARRAY); *ta - vectorr(1.*1A*XAPRfl):
hdel - vectorr(1.NAXARA3AE: etap - voctorr(4AAR Y:
Zcexp - vectotC(1,NXMRA~y): £cexpdel - v*Ctor:(1.r:;.:XASP.AY).
Zcpexp - veCtOrr~ll.AXAURMY); Ecpexpdel - veetorr ( jI.::A:FIAY):

stah - vectorr(1::A~A)
*tahp - vectorrE(I.:i;-.XARRAY),

Swipe Lystart (13 *ystart (2 . Systart (3) Lystart (43 &ysta. j53)
Gyatart (63 Aystart(717, sops, SeCfaCtot. ecpfactor.&Ecf &E14r):

.1-0.0001: hl-0.00001; hmin-1.Oe-11; kmax-100000:
mb- . ftftmp: 12 -11: 12p - 1p:

sigmae - w3p-ystart(31:

I"critical damping - Input damping - 1000.0. makes it crit:-.../--
if (c 1000.0) C - 1.5'aqrt(4*n*k):
if (CP- 1000.0) op - 1.5*sqrt(4*mp'kp).

I'establish time interval for saving data ~
dxmi 1.Ot-4:

dxlimit *(x2-x1)/1750.0;
dxsav - (x2Q0.0) 7 dmin :dxlirnit;

MT - N*Mp+4.0*mb4.4.0*mbp:
v - (Mp+44.Ovbp) IN?:
A - !l4l~p+2 .Omb*SQ(a)42 O~mbp*SQ(ap)&(Mp,4 0u..bp)"(l ..- v).7: 1.):
C - X3+13p*4.O'mb'SQ(a).44.oembpSOs(app;
j3p - 13p+4.0*mbp*SQ(ap);
rho - a/NIT:
chop - m/T
Li - LI'W*4.0*mb)/NT:

L2 - L*(Mp+4.0*Mbp)/IIT;

scarigid - ( fp+4.0*nkbp3'L)/HT:
it - Il+*HSQ(Zcrnrigid)*wib'(4.0oSQ(Zcmrigid)+2o.OSO(a));

Zttoa - lt I:p
Is - 1344.'m~b'SQ(a);
Isp - 13p+4-0*yflp4SQ(ap):
Istotal - ls.Isp:

odeint(Ystact~w~x1.x2,eps.hl~hemn,&nok,snbad,derivs.Kkqc);

for timi: j<-kount:j+.s)

%cm - ((HP#4 .O'mp)'L*m'yp(4)(JI4rnpoypgE)cJl)/wr:

Mi - (114M*SQ(zcm).+mO(2.0oSQ(a)4.40eSQ(zcm),SQfypI4liý:i
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-2.O'se~ypt4IIjI))PYPIlIIgJI-ma&ypI4I I)Pypi3I iiJI

132 - (12.HOSQ(BCm)4a(2.OOSQ(a).4.0OSQ(3cm)SO(yp(
4IIjiI

33 a~.a.I43(J**s3 1~,(I34.033Q(I3YP12SJ Iii;P51i)

RIP - (14411 OSQ(Lo-scm) *(2.0OSQ(.p)*4.0OSQ(LRcm)*S0~(YP6IIj3))

ypIS]j g4JI~ap'aia(et~mup(~jPlyp(
73 Ii):

22P- (12p44*SQ(L-s3G4 *(2.0*SQ(.p)*4.0'SQ(L-zcin+SQ(ypIEI U))I

x3p - -s**ap'cos(aipms'uptlj))yll*yIS Jpi1J(1I-w'~ap*
hin(e1gmxp113)'yp163 (~'yp(2I U).(13p*4.0Omp*SO(8p) P
(yp(3J j) im)

hiji - sqrt (SQ(Nl1.Up)4SQIN2432p3 .SQ(N33+3p));

argument - (N3*B3p)/h~jJ:

if(argumsnt>0.99999999) argument - 1.0:

theta jJ 57 .2957795231*acos (ergwuent);

hdelij) hij)-hilI:

Tl- 0.5'(1.SQ~ypllljJR.Z2*SQ(ypC2IljI)*X3*SQ(yp1331(j13);

T2 - 0.S'(X1P*SQ(Yp113jl)134 2p*SQ(yp(2 I)iI)4+13 p* 0 1 1 ~ 4 , 1

~~~2.~S Ohap(1 (3 1i eIj J 4sp iii Iji)

T4 m 0.5*mp*(SQ(ypI7jjJ]).SQ(yp16)J()IIPSQ(YP~lIIR~l)SQ(ypI
2I1jl))

2.20'apeuin (slqaaxp I i) yp (23Ij)yptlIiji'yp 1631j1
-2.0'ap~coslsigma~xpljl)'yp~lJillyp(3I(JiPypI

6J(ji):

TS - -maOyp(2)(jj*yp(S~lj):

T6 - -uP*(-aP*YPI7I[j)yp(2Itilcos(si9Ia-xpljI)
*ap~ypI7J (jlyplllj 1ePannseima'xp~3))
-aP'Sigmayptl (jJlyplSI(jl~cos(siqmalxpljI)
~ap'aigmasyp(21(jjoyp(6J(jlPsin(sigma~xplj]));

17 - (0.5'SQ(m~yp(1SjJ.mpypI73(jI))/NT:

TS - I0.S'(SQ(YIp1IIJI)4SO(ypI21(jJ))
*SQ(m~ypl4)J j4flp~ypi6J ij) f/Ill,:

13 - 0.5*(SQ(YpI1Hl)4j)SQ(yp(23IjI3)'(H44.0*mPSQ(LP*
SQI (Mp+4.O*mp)/MT);

110 - 0.5*SOIS(YplllJjI)*SQ(ypI2)(jI))R(Mp*4.0Omp)SQ(LP*
SQl (11.4 .Oi)/FIl);

111 - (0m.p).(-yp515(jl)*(m~yp15JIj3,u~yp717Jj))/MT:

T12 - -mRypIII(jJ*(5O(yp~l)(jJ))*SQ~yp(2I(jJRV)

(m~yp14Jlj14W~yp161 Ij)b(Hp44.0nmpPei./trr:
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T13 - .. *Ypf~lJj)*IQOY(yIIfl)'ISQ(vPIIIJI)3*
(meyp 1411 jI 40pypI I filjI -(tit4.11 *=*I.)AIlI:

k.I~j *?1,T2,13.74,154r64T74y14T9.?104Tl4T12'r1I:

stotaltil - ketljO.5*k*SQ(yp(41I J1I *0.5*kp*SQ(ypl l(ItIb .

etotaldtl~j) - stotalljl-ftotal(1J;

Zeli) - 0.5*(Xttotal*(SQ(ypll)Jtj)*SO(ypI2lJ~j)))

gcdlltjI - Ec~jI-gc~lI:

Repij) - 0.5'(!ttota1*(SQ(ypIljfjl)4SQ(ypI2ilii))
*lstotal*SQ(YPt3 13 6.jlonsq.1I)

EcpdelljI - tep(j)-tepilJ:
I

wa (Ia'yp(33 11) +15p* yp13111] *Sigma)) /lttotal:
lambda wn-yp13I111):
lamdap w n-(yp131113*sigma):
haq - SQ(Xttotal)*(SQ(yp(lI l13.)SQtyp(23 1133)

*SQ(Is~yp(3) (1J.Xsp* (yp(3) I1 1~qi~

If (thotalkountl-thatall) <0.0) stable condition "

if (lambda c 0.0) s ignec - 1.0: siqnq -1.0: 1
else Isignee w -1.0: signq *-1.0:3

if (lambdap < 0.0) 1 signeep -1.0; signqp - 1.0;
else signeep -2-.0; signqp - -1.0; 1

*Ise I'~unstable condition ".

if (lambda < 0.0) signec - -1.0: signq *1.0; 1
else I aignec - 1.0: signq -- 1.0: 1

if (sambdap ýc 0.0) ( sign~cp - -1.0: signqp 1-10:
else ( signecp - 1.0; signqp -- 1.0: 1

Ecfinal -(Eef - 0.03 ? Ectkount) Le: E
Ceptinal -(Ecfp - 0.0) 7 Zeptkountj : cfp:

foz (Jl: jc-kount: j4.)
I
Echypeij) - Lc~lJ'Eefinal/(Ec(13.(Ecfinal-EclllJ)

exp1*cfactor*Ecf'inllxpIjij));

Echypedelijl - tchypejJI-Echype(1J:

tephypelil - tepI1J*Ecpfina1/(Ecp(1J,(Ecpfina1l-cpII 33
exp(ecpfactoz'Lcl-fin.l'PmpI jl):

KEphypedel I i - tcphype(JIiJ-LEphype (1):

Q -2.O*chype jj~lZstotal*(1.0-(zstotal/xttotal))
-hsq' (Istotal/Ittotall * (1.-(Ietotal/Ittný,tlnU
* (Xstotalllttotal)*SQ(Isp)*SQ(Siqmaj:

OP~ 2.O*cphypetjllIstotal~ll.0-(Istotal/lttot.i13 3
-hsq*(Zstetal/Ittotal)'(1.0-(Istotal/itLotn3 3
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er (Itttotai/IttotalI)st(Jall)Uim~I

It (zrg 30.999 9999)k arg-1.0:

ZUP ((Itt~tel/ (Ittotai-Xgtotai))

* (-sa 0a (iqfAqpusqtt (OpI II I). J!.* (**
if(step 3% 0.99*999999) azgp-1.0;

rCC~apdei(1I - Kup~-cuI)

tcp~mpdol(jl - "cprnpjJ-tepexpilI:

*(Istetal/ittotal) SO(Zsp)'SQ (sigma):

-bsq'(1stotal/zttotai)o(1.o-(Zstotal/Jttn,.,,jI
* (Iatotalllttoeal) '30(18) 'SQ(Sigmka);

If (erg : 0. 999999~) aCVID:;

.CafJI * 
7.2937795131'aeos(acg):

argp * ((ttotal/ (Xttotal-istotal))

if (argp 3.0.999999993 argpi1.0:

*tapgjj 5 7.295779513140sc..(azgp):

I'~'""**initialize graphics **""'

init(): color scale 'cyanbiu*"j:
grey scale(gqreyscalQ:"): vindowDo:)
bgCil(7); erase(); :-*1or(0):
move (220,:Oi pvln-:!C'mIiz~p~ DUAL SpINNjER HASS SPRING SYST0IW).

'wLndow (22-35. 979, 37V : bgcoi(3);
*zasa(. scal*(O,iO::3.1oooo.01; Zect(0,O.10000.10000);

:zve(20e 1104200);- datte ):
?:ve-160l10.0,:printf(0O");

rOVe(0.120-90): printt(%w3 - 03 initial":;

v*ctov(0.5',l1Q*lgI: rave(-1G0,i9+70): printf(0"m):
move(10.19*2001; printf(ow2a);

nove (10. 18200): ptintf (owi"):
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meove(10,174201: priatt(ou prime dnL)I:

inove(10.14 200). prlmtf(Ox prime").

veotor(@.l5.1l0.151. move (-IGO. 15+70): pretntt(O:
.ov*(10.1S.200): Prlntf~s dot"),

vogtoi(O.ll.11O.14): move(-160.14+701: pciatf(09);
mov*(10.14+2001: printf~z*1:

vfttor(0.13.110.131: move(-160.13*701; prlntf("Ol:
move(10.13+200); pgintf(Oke-ke i Mt, cv- i It,)"):

vtctor(0.12,110.12): move(-160.12470); ptlntf(00):
Novo (1O. 12200); prtntft"Ec-Kc £ (r). Ecchype-tchype 1 0%))1:

vector(0.11.110.11): move(-140.114701; prtintf(0001:
move(10.l11200): printf(Cep-gcp I (r). Cephype-Ecphype i 09");~

vector(0.0.110.0): move(.160.0+70): PtiRtf(0):
move(10,0+2041). pgintf(Otheta, eta Mb. *tap Wr. h - h lmti~)

vector (0. 19*750.11. 194750); vector (19,19*750.110,194750):
vector (0.19+500.11. 19*500): vector(l1993500. 110. 19+5003:
vector (0.19*2S0. 11. 19*250): vector (19.19+250,110. 19s.250).
vector (0.19-250. 11.19-250): vectog(19,19-25O* 110.19-250):
vector(0. 13-500.11.19-500): vector (19. 19-500. 110,19-500):
vactOZ (0.16.250.11.164250): vector (19. 11250. 110. 1842S0):
vector (0.10-250.11.13-250). vector 119,10-250.110, 18-250):
vector (0. 13-500.11.13-500): vector(19.10-500.110.13-500):

XeC&le - 10000.0/xpfkountl:

color~l): /~**O* blue - total energy, rotor hype **a*,
for 15-1: Jckount. j++)

Vector((int) (Xscale*mp(jl)).(Intl (13+(0.Olletotaldelljj)).,
(int) (xscale'xp1j.1)), (tnt) (134(0.01'etctalGeltj'1)))):

vector((int) (xscaleoxpljj). (intl (13*(0.1letotaldell~j))).
(intl (xscale'xPlj.1J). int) (13*(0.1*etotaldelgj~l)fl):

vector(Lint) (xscal*expIlI).(lint) (124(50.O*Echypedelljl)).
(int) (xscaleaxp(j.13). lint) (124(50.0*Echypedellj~ll)n):

voctor((int) (3tscal**xp~jjl. tint) (04(100.0*etahljl))).
vltotint) (xscale'up~jl)). (lot) (0 (1000.0*etahlj.1))):

(min) (scale'xptj41)). lint) (1214(000.0'e*tahl~j.l1j3):

color(S): /"*purPle - platform exponential*"'*/
for (fr1: Jckount~j++)

vect~or((int) (xscale'zp(lj)). (Lnt) (114(50.@*Ecpexpdalgljfl.

vec'-or((int)(xscaleexpgj)). (int)(04(l00.0*etapgjjl))
vetolint) (xscal~expljj1). lint) (l1G(100.OeetapljJI).))
votr(Intl (xseale*JgpIelJ),(lnt) (lls(000.0*etapgjti)),j
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ool~(61 /~ yellow - rotor ,xponential"'1l
fox I)-1: )(komat; .-!

I
vector (Ult? :xscale'xp(j IlI. I(Intl (124 (50.O'teC@pd I I)I I).

lint, (xscaleu3plj~li). lint) (124(50.OEftexSrxie I ia I I I I:

voctor I(Untl 'isca1.xpI Ill.) (I ntl (04 (100 .O*ta I ji I))
( int I(xtscale~xp U41I3I.(tint 1(0+ (100. O'ta j+I I I I

(lnt:(xscaleexpli.113,(int)(114(1000.0'0ta~ili333ll

coloc(O): /- black - platform hyperbolic '*010
for (il; j~kount: -,

vector ((Intl xscal**xpl j)), int) (11* (50.0,c~phypcd#!i I J3).

(lot) (xscasoexptj*lI3 . (Intl (04(100.Oe*tahptj4Il 11) :

(Intl (xscale~xplj*l1) . tint) (114 (1000.O'otahlp( jal I33)

color (4; r ed - rotor
for (J-1. J(kount; j4

voctor((int) (xsc&!**xpljjl.( int) (11O.(1432.39448783*(yp131i()l-Vr 1,1 I 11))
(Int) (xscal**xpl41ll.M tint) (110. (1432.39448783*(yp(3 l U+1l-ypI3 l 111 )3

vector(intl (xcacae~xp(Jl). (Intl 1(9+(1432.3944S783'yp[2ll1 i) I
(lot) (xscal**xpfi*1l). tint) (194 (1432.39448783*yp(?l(eI j3 33l;

vector((Int) (xscal**xptjl), (intl (l34(1432.394487813ypl11 I ji)),

voctor((lnt) (xscal.'2Ip~i)), (intl (17+(1000*yp[ 7 ) (j)ill,
(Intl xscale'xp~jlll I. (Intl (174 1000*yp(l IJ41 1)13:

vtctor((int) (xseale~xpljl), (Int) (l6+(10001yp616 (jll3.
(Intl txscal*-xp(j.1l.) tint) (16*(1000*yp161 (J41j13):

V' -rf((nt) 1xscal**xptj)). lint) (1S+1l000'ypIls [j))),
(Intl Ixscale~xp(j1.133. (ntl (1S+(10004ypt5)Iljal3IM:

vectoz((lnt) ixscal**xpl Ii), int) (14+(lOO0*yp(41 I jil
(intU ."xscale~xplj~lil. (int) 114+(1000*ypl4l(j, I I)

vector((intl fxscai**xptjl), (int) (l3+(O.0l~kedolljill),
tint) ;.xscalex3p( j.1l), (intl (13*1.(0.lkedellj4Il)l

vactor((it3 1x.scale'xp(jj3. (Intl (l3+(0.1*kedll~ji)l.
(lot) :xscale'xpt 14111. (Intl (13+(0.l*kodeI(1411 M):

vector((int)!xscale'3p(jJ)),(Intl (12+(SO.0'Ecdollii)).
lint) xsacale'xpjji1)), tint) (l2+(5O.O1Ccdel~j~li)l:

vector((Intl (xscalexpljll, (intl (11.(50.0O4 Kcpdeltj))).
(Iotl !xscalemxp(i.1lll (Intl (ll.(50.0'Ccpdeiliell)ll:
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vector I~i (jt uscalesg~pl ) I. t lot) (Of (100.0&Lbht aI JI-)
lint) t5.0a10.xplj@)4) lin (jt) (0. (l00.01thatal j ))):

vecter((int)(uscaleosp13j1. lint) (114(1000.0'thctalil)).
(intl (xscale'apl3.1J). (Intl (lit(1@00.0' hetail jll)));

vectorl (Intl lxscale*xp(1l). (Lot) (04 (0.0001'k*(ji) .
(int)lascal.2xp13.l)).liflt)(04lO.0001lkeU'II))).

vtoliintl(xscalexpljjl). (intl (0.(0.0001'etota'l~j~i).)

vector (lint) (xscaleiipl 31), lint) (04 (0 .lhUM))
(int) (xscale~xplj~lJ). int) O(0.l.1~h13.l1))):

windovO 0;
color (03:

1 print initial, final data **4/

move(3S0,US3; psintf I" INITIAL CONDITIONS kocamit - Id'.Iknisisl

move(22,9101: Pcintf("imie -%3.Of seconds*,xplkountl);
move(500. 910): printf("eps ~ %d/%d".eps. nbad. nok);

move (22, 940):

move(S00,940). printf("w3p- %9.7t L - %3.lf".w3p.L):

0ovg(22,930): PrintfV11 -%4.0f 12 -%4.Of 13 -%4.0f",11,72,71):
move(22,l010); printf("m - 04.0f m %.f.~)
mov*l22,1040); pzintf("a -%4.lf k -%4.lf c -%4.lf".~a.k.c):
move(22,1070): printf(za -%4.2f zdot-%4.2f",yp(4j111,yp(l~ltl):

mov*(S00.960); pS.ntf(Pllp-%I.Oi 12p-%4.0f 13p-%4.0f",11p.l~p. 13p);
move(500,2020): printf(*Mp ..i4.0f mp%7.S ".N4p~mp);
move(SOO,1040); printf(Map-S4.lf kp-%4.lf cp-%4.11".ap.kp~cp):
move(SOO.1070): print~t~zp -sq.2t :dotp -%4.2f".yplGj~ll.ypl7IlII):

auove(22,2110): printfMh £%9.4f k*i~.f.hlw1)
mavel22,1135): printf(uh £-%9.4f ke f-%7.lf",hlkountj.kelkount)):
mov*122,1160); printf("hdelper-%5.2f",100.0*(hikounti-h(l3)/hillj:
ziove(250.1260): print~f("kedelper-%5.2f",100.0*(kelkountl-ke(1ll)/k'111):
move (500 1160):

movo(730, 1160): Print!(uZcp delpez-%5.2f. 100.0' (Ccplkountj-Erpill )/Ecp~l ):

mov.(500,2110): printf(*Ec i-19.4f 'theta i-1k7.5f",Ec(1l,thet~ajl2 :
imov*(500,1135): printf(*Ec f-%9.4f theta f-17.5t.Eel kountIthtla'naI 1.rmt 1):
0/

movo(22,900): printf(" platform rotor"):
ciovo(22,920): printf(Olip - 16.2f",Ilp);
move(240,920): print!("11 - %6.2f",11);
move(22,040). printf(013p - S4.2f".I3p):
aovo(240,940): printf(0Z3 - S6.2fP.13).
move(22.9601; ptint:I"KP - %6.2f",mp);
move(240,960): printfe(w -*62f,)
movel22,930). print.8(omp - 62ap;
rnovo(240,9S0). ptintf(0m - S4.2f",m):
covo(22,1000): printf("ap % 6.2f",ap):
move(240.1000): ptint!l". - S.2f",);
move(22,1020): ptintf&(Nkp - S6.2f",kpl;
move(240,1020): print!("k -%6.2f",k);
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move(22.1040): printf("cp - 16.2tCcpi:
.v,01240.1040); pxlnttf("c -* 2"c.

move(2?.1040): printf(WL - %6.4t",L);
move(240.1060): pzintf("ZsIIt - %6.3C.1astotaI/IttoLAI):

xove(22,1100): ptintf("ap - %6.2f'.ypI6)111);
move(240,2100). printf("a - %6.Uf"ypI4jIj):
move(22.1120): Print*(~dip - %6.2f",yp(7)(1)):
skovei240,1120): printf("da - %I.2fwyptS)t1));
move(?2.1140);* prlntf("u3p - %6.2V",Yp(3Jjjj4iqmftIJ:

oove(22.1160): printt(owl - %6 .2f".yp[I)I11):
move(240,1160): printf(tw2 - 16.2f".yp(2j11j);

move(480,900); printff"%3.Of seconds",xplkounti):
Pmaove030, 9001 : prlntf("b i % 9.4f",h1Il):
mov*(480,920). ptintt(%Sd / %d I d",nbad~nok,Icount);
move(730,920): pxintt("h f % 9.4f",h(kountl):I
Uov*(4S0,940): pZlntf(eOps % ?eo,eps);
move (730, 940): printf("hdolp -%5.3f",100.0*(h(kounti-hill)ji-ii!.:

mooe(ISO,940): printtt~ke I -94"keI)

move(730,960); printf(OO i - 19.4f".ototai[1j);
OoveI480,980); ptintt("ke f - %9.4f",ketkouflti);
inove(730,3S0); pziantf'' f - %9.4f",*tota~lIkount)):
inove(440,1000): print'.t"kedolp - %S.3f",1O0.0*(ke(kountJ-kc(Ifl/I:-'Iij):
ov. (7200 1000):

ptintf("Odelp - 5.3t".100.0(etat.1(kountl-.totalllfl/',,-' 1I~l):

movet4S0,1030): printf("Ecpi - %9.3f".Ecp(1I);
move(730,1030): printf("tc i - %9.3C".Ec(1I):
ineve(480,1050): printf("Ecpf - %9.3t",Ecplkountj);
move(130,1050): printfliEc f - %9.3f".Ectkountj):
nov*(4310,1070). printf ("lambdaP - %5.3f ",land~ap):
oove(730,1070). printf("lambda - %S.3f",laubda).
iNove(460,1090). printtt'sigrbqp - %5.2t",signqp):
uov*(730,2090), printf(Osiqnq - %5.2f".signq);
uov*1480,1 20l); printf("dgcpllanbdap- %6.3t", (ECepkountJ-EcpIl))/I.ý.--,-.k'p):
movo(730,1110): Vrintf("d~c/lambda - %t6.3f", (Eclkount)-EcI13)/I.-iw',-.*I:,~

move(490,1130): printfg'Ecfp - %8.6f".Ecfp);
move(730,1130); printf("Ecf - 18.6f".Ecf):

mOve(480, 1155); print! ("theta i -%6.2f",thetat 1)):
mov*(620, 1155): printf("stop i -%6.2f",etap(1I):
aove(760,1155): printft"eta 1. -%6.2f",etajlJ):

move(6?0,2175): printf("etap f -%6.2f",etap(kountj):
move(760,217); printI ("eta f -%6.2f",etalkountJ):

I** uzpper right hand corner 0*I
mov*(600,-33); prlntf("Ec initial/final - Sg / %q".Ect1Ij,Fc~kount');
move(600,-13): ptintf("Ecp initial/final - %9 / %g*,Ecp(1J,Ecp(kcutznj.):
move(600,27): printit"Ec factor Ecf - %g / %g".eefactorEc1?:
move(600,47); printf(Ecp factor /Ecfp - S9 / %q".ecpfactor.Ecfr):

move(980. -33) : printf(Otd".nbad):
move(980,-13): print.f("%d",noic),

move (960,27); printf ("nbad"):
move(980, 47): printt("nok");
move (980.67): priatI ("hount"):
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move (960. 157): pile: (*kedelO);
move (980. 177 ): prlntf("edelp-);
move (980. 197); print (Ohdelp");

move (980.227); print ("%9". theta 11):
move(980.247): print! (OtgOthetalkounti):

move (980. 267);- print! (th 1-):
move (980,287) : prin-.f("th fu)

movt(960,317): print! (%9u.eta~li):
move(900. 337); print! (g"%.et&1kountl):

mo~ve(9S0, 357):; ptintff"tet 1"):
move(9S0,377); print! ("eta f");

move 18,0.407); print! ("%q",etapIli):
move 1980. 427): printf("19.etaplkountl):

move (980.447): print! ("etapl");
move (960. 467); prin"! ("etapf"):

mov*(980.497): printfl"%9".Eclkounti-EcI~i):
aov*(930.S17); printf (0%90,lawda):
mov*(980. 537): printf("%9". signq):

move (960.557): print ("Ecdel");
move (930,577): ptint! (O1awda"I:
move (930, 597) ; printf (muignq");

move(980.627); printf(O%g".Ecplkountj-Ecp~lj):
move (960.647): print.' ("S90. IsaI Iap):
move (950. 667): print ("%90. aignqp):

move (960.687): print! (wEcpdai"):
move (930. 707): print! ("lamdap"):
move (930.727): print! (mxinqn"):

move (930.757): printf ("Sq", istotal/ittotal);
move (930. 777); print! ("!Isit");

freevectori (ysta1, ., N:, MIM Y froevector (Ecp, 1. MAXART'Asl
free vector (ke. 1, HAXAMAY) : f ree-vector (Ecpde1, 1,I'iAXA!PA
free vector (kedelt. 1. N) :RY) fro*e vector (Echpe. 1.MAXAf"PAY)
fr~eevector (ketoa 1, MAXAMRAY); free vector (Echpedel.,1 AXAITAY):
frac vector (ketoadel. LMMAXRRAT): free vector (Ecphype, 1,IAXA'I'AY):
free-vector (htta, 1. H AXA PPAY: free vector (Ecphypedel. 1,i:AXArlIAY).

_ve vctor (thetade, 1,iHAMAAY): free vector (eta.pe 1,MAXAFRAY):

free vect or (thdei. I, FAXAM~Y) ; free vector (etap. * AY.AIUAY);
fr~eevector (Ecexp. 1, * AXARMAY) ; free vector (etapdo 1, MAARAYAIY):

free vector (Ecpexp. 1 * !'AXARRAY): free vector (Ecpexpdel, 1, *11%XARI'AY)

free -vector (etth. 1,WCAARRAY); free vector otalip, 1,IAXAPPAY):
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